Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Prostate ; 83(10): 936-949, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37069746

RESUMO

BACKGROUND: Prostate cancer (PCa) is the leading cause of cancer related deaths in men, often androgen deprivation therapy (ADT) leads to the progression of androgen independent PCa (AIPC) which further leads to Neuroendocrine PCa (NEPC). Identifying the molecular mechanisms which navigate the neuroendocrine differentiation (NED) of PCa cells is clinically relevant. It has been suggested that the micro RNAs (miRNAs) play an important role in the regulation of intrinsic mechanisms relevant to tumor progression, resistance as a result leads to poor prognosis. miR-147b has been transpiring as one of the deregulated miRNAs associated with the occurrence of multiple cancers. The present study has studied the role of miRNA-147b in inducing NEPC. METHODS: To investigate the functional role of miR-147b in NEPC, we have expressed miRNA mimics or inhibitors in PCa cells and monitored the progression of NEPC along with PCa cell proliferation and survival. The molecular mechanism miRNA-147b follows was studied using western blot and reverse transcription polymerase chain analysis. miRNA target prediction using bioinformatics tools followed by target validation using luciferase reporter assays was performed. RESULTS: In the present study, we found that miR-147b is highly expressed in AIPC cell lines in particular neuroendocrine cells NCI-H660 and NE-LNCaP derived from LNCaP. Mechanistic studies revealed that overexpression of miR-147b or miRNA mimics induced NED in LNCaP cells in in-vitro while its inhibitor reversed the NE features (increased NE markers and reduced prostate specific antigen) of PC3, NCI-H660 and NE-LNCaP cells. In addition, miR-147b reduced the proliferation rate of LNCaP cells via elevated p27kip1 and lowered cyclin D1 for promoting differentiation. In reporter assays, we have identified ribosomal protein S15A (RPS15A) is a direct target of miRNA-147b and RPS15A expression was negatively regulated by miR-147b in PCa cells. Furthermore, we also report that RPS15A is downregulated in NEPC cells and its expression is inversely correlated with NE markers. CONCLUSION: Targeting the miR-147b - RPS15A axis may overcome the progression of NEPC and serve as a novel therapeutic target to attenuate NED progression of PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios , Androgênios/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/patologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
2.
Int J Biochem Cell Biol ; 166: 106493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935328

RESUMO

In prostate cancer (PCa) patients, a proto-oncogene Tumor protein D52 (TPD52) is overexpressed, and it is involved in different cellular functions. In this study, we report that TPD52 expression is positively associated with the emergence of neuroendocrine PCa (NEPC). With overexpression of TPD52 in LNCaP cells, we found neuroendocrine differentiation (NED) of cells in in-vitro and distinct NED features confirmed by NE markers neuron-specific enolase (NSE) and chromogranin A (CHR-A). Further, we investigated the molecular mechanisms involved in TPD52 mediated NED of PCa cells. We found that TPD52 activates the NF- κB - STAT3 axis for the induction of NED in LNCaP cells. Indeed, inhibition of NF-κB - STAT3 attenuated the progression of NED in TPD52 positive LNCaP cells. Importantly, silencing of TPD52 expression or inhibition of NF-κB - STAT3 activity in a neuroendocrine cell line NCI-H660 showed a marked decrease in the expression of NSE and CHR-A, confirming the reversal of the NE properties. Notably, TPD52 overexpression in LNCaP cells induced expression of N-cadherin, Vimentin, ZEB1, and Snail1 indicating that TPD52 positively regulates epithelial to mesenchymal transition (EMT) of PCa cells towards NED. Moreover, silencing of Snail1 in TPD52 positive cells blocked the progression of NED and, in NCI-H660 cells reversed NE properties as expected. Of the few requirements of TPD52, activation of NF-κB - STAT3 is essential for promoting EMT compelling NED of LNCaP cells. Collectively, these results reveal that TPD52 is associated with the progression of NEPC and emphasizes the need for therapeutic targeting of TPD52 in PCa.


Assuntos
NF-kappa B , Neoplasias da Próstata , Masculino , Humanos , NF-kappa B/metabolismo , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Isoformas de Proteínas/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Cell Signal ; 91: 110240, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34986386

RESUMO

Neuroendocrine prostate cancer (NEPC) is an aggressive, androgen independent PCa and it is detected in patients undergoing androgen deprivation therapy (ADT). Interleukin-6 (IL-6) is a pleiotropic cytokine elevated in PCa patients promotes neuroendocrine differentiation (NED). In this study, PCa cells were differentiated with IL-6 in in-vitro to identify novel targets or signaling pathways associated with emergence of NEPC on deprivation of androgens. From the results, we observed an activation of TGF-ß signaling pathway is altered through multiple proteins in differentiated LNCaP cells. Hence, we investigated the role of TGF-ß axis in PCa cells differentiation. LNCaP cells treated with IL-6 in androgens deprived media release excess TGF-ß ligand and this as conditioned media added to cells stimulated NED of PCa cells. TGF-ß released by IL-6 stimulated cells activate p38MAPK through SMAD2 thereby promote NED. Inhibition of TGF-ßRI and TGF-ßRII signaling activation in LNCaP cells treated with IL-6 did not reversed the NED of cells, possibly due to the reason that the inhibition of TGF-ß axis is further activating p38MAPK through SMAD independent manner in PCa cells. However, siRNA mediated knock down or inhibition p38MAPK inactivated TGF-ß - SMAD axis in differentiating cells and attenuated NED of LNCaP cells. This result suggests that p38MAPK is the central node for receiving IL-6 signals and promotes NED of LNCaP cells in androgens free media. Remarkably, downregulation or inhibition of p38MAPK in NCI-H660 reversed NED characteristics as well as markers along with inactivation of SMAD2 whereas no effect observed in WPMY-1 normal prostate cells. Taken together these findings unveil that p38MAPK and its upstream regulators are potential targets to overcome the progression of NED of PCa and develop novel therapeutic measures along ADT for effective treatment of PCa.


Assuntos
Interleucina-6 , Neoplasias da Próstata , Antagonistas de Androgênios , Linhagem Celular Tumoral , Humanos , Interleucina-6/metabolismo , Masculino , Neoplasias da Próstata/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA