Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 723: 150178, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-38823363

RESUMO

Cell models of mitochondrial complex Ⅰ (CⅠ) deficiency display significant elevations in reactive oxygen species (ROS) levels and an increase in cellular apoptosis. However, the underlying mechanisms governing anti-apoptotic processes in CⅠ-deficient cells remain elusive. Here, we introduced a mutation in NDUFS7, a crucial subunit of CI, in HEK293T cells and found that the absence of NDUFS7 resulted in reduced cell proliferation, elevated cell death, and increased susceptibility to oxidative stress. Mechanismly, we revealed that the upregulation of SLC7A11 played a crucial role in mitigating cell death resulting from NDUFS7 deficiency. Specifically, the increased expression of SLC7A11 enhanced cystine import, which subsequently reduced cell death by promoting the biosynthesis of reduced glutathione (GSH). Collectively, our findings suggest that SLC7A11-mediated cystine import, representing a novel pathway independent of NADPH production, plays a vital role in protection against NDUFS7 deficiency-induced cell death. This novel pathway provides potential insights into the understanding of pathogenic mechanisms and the therapeutic management of mitochondrial disorders associated with CⅠ deficiency.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Cistina , Complexo I de Transporte de Elétrons , Humanos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Apoptose , Morte Celular , Cistina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/deficiência , Glutationa/metabolismo , Células HEK293 , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
2.
Pestic Biochem Physiol ; 164: 73-84, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284140

RESUMO

The citrus red mite, Panonychus citri, is a major pest on citrus all around the world. Mitochondrial Electron Transport Inhibitors of complex I (METI-I) acaricides such as fenpyroximate have been used extensively to control P. citri populations, which resulted in multiple reports of METI-I resistant populations in the field. In this study, biochemical and molecular mechanisms of fenpyroximate resistance were investigated in P. citri. Seven populations were collected from Northern provinces of Iran. Resistance ratios were determined and reached up to 75-fold in comparison to a fenpyroximate susceptible population. Cross-resistance to two additional METI-I acaricides, pyridaben and tebufenpyrad, was detected. PBO synergism experiments, in vivo enzyme assays and gene expression analysis suggest a minor involvement of cytochrome P450 monooxygenases in fenpyroximate resistance, which is in contrast with many reported cases for the closely related Tetranychus urticae. Next, we determined the frequency of a well-known mutation in the target-site of METI-Is, the PSST subunit, associated with METI-I resistance. Indeed, the H92R substitution was detected in a highly fenpyroximate resistant P. citri population. Additionally, a new amino acid substitution at a conserved site in the PSST subunit was detected, A94V, with higher allele frequencies in a moderately resistant population. Marker-assisted back-crossing in a susceptible background confirmed the potential involvement of the newly discovered A94V mutation in fenpyroximate resistance. However, introduction of the A94V mutation in the PSST homologue of D. melanogaster using CRISPR-Cas9 did not result in fenpyroximate resistant flies. In addition, differences in binding curves between METI-Is and complex I measured directly, in isolated transgenic and wildtype mitochondria preparations, could not be found.


Assuntos
Acaricidas , Citrus , Tetranychidae , Animais , Drosophila melanogaster , Irã (Geográfico)
3.
Proc Natl Acad Sci U S A ; 111(34): 12533-7, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25092297

RESUMO

Despite ongoing high energetic demands, brains do not always use glucose and oxygen in a ratio that produces maximal ATP through oxidative phosphorylation. In some cases glucose consumption exceeds oxygen use despite adequate oxygen availability, a phenomenon known as aerobic glycolysis. Although metabolic plasticity seems essential for normal cognition, studying its functional significance has been challenging because few experimental systems link brain metabolic patterns to distinct behavioral states. Our recent transcriptomic analysis established a correlation between aggression and decreased whole-brain oxidative phosphorylation activity in the honey bee (Apis mellifera), suggesting that brain metabolic plasticity may modulate this naturally occurring behavior. Here we demonstrate that the relationship between brain metabolism and aggression is causal, conserved over evolutionary time, cell type-specific, and modulated by the social environment. Pharmacologically treating honey bees to inhibit complexes I or V in the oxidative phosphorylation pathway resulted in increased aggression. In addition, transgenic RNAi lines and genetic manipulation to knock down gene expression in complex I in fruit fly (Drosophila melanogaster) neurons resulted in increased aggression, but knockdown in glia had no effect. Finally, honey bee colony-level social manipulations that decrease individual aggression attenuated the effects of oxidative phosphorylation inhibition on aggression, demonstrating a specific effect of the social environment on brain function. Because decreased neuronal oxidative phosphorylation is usually associated with brain disease, these findings provide a powerful context for understanding brain metabolic plasticity and naturally occurring behavioral plasticity.


Assuntos
Agressão/fisiologia , Abelhas/fisiologia , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Agressão/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Abelhas/efeitos dos fármacos , Abelhas/genética , Comportamento Animal/efeitos dos fármacos , Benzoatos/farmacologia , Encéfalo/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Técnicas de Silenciamento de Genes , Genes de Insetos , Glucose/metabolismo , Hidrocarbonetos Clorados/farmacologia , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Pirazóis/farmacologia , Comportamento Social , Meio Social
4.
Life (Basel) ; 12(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36013387

RESUMO

BACKGROUND: Induction of acute ER (endoplasmic reticulum) stress using thapsigargin contributes to complex I damage in mouse hearts. Thapsigargin impairs complex I by increasing mitochondrial calcium through inhibition of Ca2+-ATPase in the ER. Tunicamycin (TUNI) is used to induce ER stress by inhibiting protein folding. We asked if TUNI-induced ER stress led to complex I damage. METHODS: TUNI (0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 24 or 72 h following TUNI treatment for mitochondrial functional analysis. RESULTS: ER stress was only increased in mice following 72 h of TUNI treatment. TUNI treatment decreased oxidative phosphorylation with complex I substrates compared to vehicle with a decrease in complex I activity. The contents of complex I subunits including NBUPL and NDUFS7 were decreased in TUNI-treated mice. TUNI treatment activated both cytosolic and mitochondrial calpain 1. Our results indicate that TUNI-induced ER stress damages complex I through degradation of its subunits including NDUFS7. CONCLUSION: Induction of the ER stress using TUNI contributes to complex I damage by activating calpain 1.

5.
Curr Pharm Des ; 28(21): 1769-1778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35362381

RESUMO

BACKGROUND: A high fructose diet (HFD) induces protein glycation. The latter is related to a higher risk of cardiovascular disease. Curcumin is a natural pleiotropic compound that may possess antiglycant properties. OBJECTIVE: The study aims to analyze the effect of curcumin on the content of glycated proteins in the hearts of 6-week-old mice fed with a HFD for 15 weeks. METHODS: Mice were allocated into four groups (n = 6/group): a control group that received a standard diet (CT); a group that received 30% w/v fructose in water (F); a group that received 0.75% w/w curcumin supplemented in food (C); a group that received 30% w/v fructose in water and 0.75% w/w curcumin supplemented in food (F+C). The content of glycated proteins in the heart was determined by Western Blot (whereas the spots were detected by 2D-PAGE) using anti-AGE and anti-CML antibodies. Densitometric analysis was performed using the ImageLab software. Glycated proteins were identified by MALDI-TOF-MS, and an ontological analysis was performed in terms of biological processes and molecular function based on the STRING and DAVID databases. RESULTS: Fourteen glycated protein spots were detected, two of them with anti-AGE and the other 12 with anti- CML. In total, eleven glycated proteins were identified, out of which three had decreased glycation levels due to curcumin exposure. The identified proteins participate in processes such as cellular respiration, oxidative phosphorylation, lipid metabolism, carbohydrate metabolism, the tricarboxylic acid cycle (TAC), and the organization of intermediate filaments. CONCLUSION: Curcumin decreased the fructose-induced glycation level of the ACO2, NDUFS7, and DLAT proteins.


Assuntos
Curcumina , Frutose , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Curcumina/farmacologia , Dieta , Frutose/farmacologia , Camundongos , Água
6.
Anticancer Agents Med Chem ; 19(1): 130-139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30113000

RESUMO

BACKGROUND: Araucaria angustifolia extract (AAE) is a polyphenol-rich extract that has gained interest as a natural anticancer agent. Recent work suggests that AAE induces oxidative damage and apoptosis through its action on decreasing complex I activity of the mitochondrial Electron Transport Chain (ETC). AIMS AND METHODS: In the present study, we aimed to further examine the specific targets by which AAE exerts proapoptotic effects in HEp-2 cancer cells. Specifically, the effect of AAE on the: 1) levels of pyruvate dehydrogenase was assessed by ELISA assay; 2) levels of mitochondrial ETC complexes, focusing on complex I at the gene transcript and protein level relevant to ROS generation was evaluated by multiplex ELISA followed by qRT-PCR and immunoblotting; 3) mitochondrial network distribution analysis was assessed by MitoTracker Red CMXRos; and 4) chemical variations on DNA was evaluated by dot-blotting in HEp-2 cells. RESULTS: Results demonstrated that AAE increased protein levels of PDH, switching energy metabolism to oxidative metabolism. Protein expression levels of complex I and III were found decreased in AAE-treated HEp-2 cells. Analyzing the subunits of complex I, changes in protein and gene transcript levels of NDUFS7 and NDUFV2 were found. Mitochondria staining after AAE incubation revealed changes in the mitochondrial network distribution. AAE was able to induce DNA hypomethylation and decreased DNA (cytosine-5)-methyltransferase 1 activity. CONCLUSION: Our data demonstrate for the first time that AAE alters expression of NDUFS7 and NDUFV2 mitochondrial subunits and induce epigenetic changes in HEp-2 cancer cells leading to a possible suppression of oncogenes.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Neoplasias Laríngeas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética/genética , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Mitocôndrias/metabolismo , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação , Relação Estrutura-Atividade , Traqueófitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA