Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 11(35): 4550-9, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26068971

RESUMO

Branched gold nanoparticles with sharp tips are considered excellent candidates for sensing and field enhancement applications. Here, a rapid and simple synthesis strategy is presented that generates highly branched gold nanoparticles with hollow cores and a ca.100% yield through a simple one-pot seedless reaction at room temperature in the presence of Triton X-100. It is shown that multibranched hollow gold nanoparticles of tunable dimensions, branch density and branch length can be obtained by adjusting the concentrations of the reactants. Insights into the formation mechanism point toward an aggregative type of growth involving hollow core formation first, and branching thereafter. The pronounced near-infrared (NIR) plasmon band of the nanoparticles is due to the combined contribution from hollowness and branching, and can be tuned over a wide range (≈700-2000 nm). It is also demonstrated that the high environmental sensitivity of colloidal dispersions based on multibranched hollow gold nanoparticles can be boosted even further by separating the nanoparticles into fractions of given sizes and improved monodispersity by means of a glycerol density gradient. The possibility to obtain highly monodisperse multibranched hollow gold nanoparticles with predictable dimensions (50-300 nm) and branching and, therefore, tailored NIR plasmonic properties, highlights their potential for theranostic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA