Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420133

RESUMO

The ectopic expression of the transcription factors OCT4, SOX2, KLF4 and MYC (OSKM) enables reprogramming of differentiated cells into pluripotent embryonic stem cells. Methods based on partial and reversible in vivo reprogramming are a promising strategy for tissue regeneration and rejuvenation. However, little is known about the barriers that impair reprogramming in an in vivo context. We report that natural killer (NK) cells significantly limit reprogramming, both in vitro and in vivo. Cells and tissues in the intermediate states of reprogramming upregulate the expression of NK-activating ligands, such as MULT1 and ICAM1. NK cells recognize and kill partially reprogrammed cells in a degranulation-dependent manner. Importantly, in vivo partial reprogramming is strongly reduced by adoptive transfer of NK cells, whereas it is significantly increased by their depletion. Notably, in the absence of NK cells, the pancreatic organoids derived from OSKM-expressing mice are remarkably large, suggesting that ablating NK surveillance favours the acquisition of progenitor-like properties. We conclude that NK cells pose an important barrier for in vivo reprogramming, and speculate that this concept may apply to other contexts of transient cellular plasticity.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Reprogramação Celular/genética , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Células Matadoras Naturais/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXB1/metabolismo
2.
BMC Immunol ; 20(1): 8, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696399

RESUMO

BACKGROUND: Natural killer cell responses to virally-infected or transformed cells depend on the integration of signals received through inhibitory and activating natural killer cell receptors. Human Leukocyte Antigen null cells are used in vitro to stimulate natural killer cell activation through missing-self mechanisms. On the other hand, CEM.NKr.CCR5 cells are used to stimulate natural killer cells in an antibody dependent manner since they are resistant to direct killing by natural killer cells. Both K562 and 721.221 cell lines lack surface major histocompatibility compatibility complex class Ia ligands for inhibitory natural killer cell receptors. Previous work comparing natural killer cell stimulation by K562 and 721.221 found that they stimulated different frequencies of natural killer cell functional subsets. We hypothesized that natural killer cell function following K562, 721.221 or CEM.NKr.CCR5 stimulation reflected differences in the expression of ligands for activating natural killer cell receptors. RESULTS: K562 expressed a higher intensity of ligands for Natural Killer G2D and the Natural Cytotoxicity Receptors, which are implicated in triggering natural killer cell cytotoxicity. 721.221 cells expressed a greater number of ligands for activating natural killer cell receptors. 721.221 expressed cluster of differentiation 48, 80 and 86 with a higher mean fluorescence intensity than did K562. The only ligands for activating receptor that were detected on CEM.NKr.CCR5 cells at a high intensity were cluster of differentiation 48, and intercellular adhesion molecule-2. CONCLUSIONS: The ligands expressed by K562 engage natural killer cell receptors that induce cytolysis. This is consistent with the elevated contribution that the cluster of differentiation 107a function makes to total K562 induced natural killer cell functionality compared to 721.221 cells. The ligands expressed on 721.221 cells can engage a larger number of activating natural killer cell receptors, which may explain their ability to activate a larger frequency of these cells to become functional and secrete cytokines. The few ligands for activating natural killer cell receptors expressed by CEM.NKr.CCR5 may reduce their ability to activate natural killer cells in an antibody independent manner explaining their relative resistance to direct natural killer cell cytotoxicity.


Assuntos
Expressão Gênica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Receptores de Células Matadoras Naturais/genética , Biomarcadores , Linhagem Celular Tumoral , Antígenos HLA/imunologia , Humanos , Imunofenotipagem , Ligantes , Receptores de Células Matadoras Naturais/metabolismo
3.
Proteins ; 84(9): 1304-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27238500

RESUMO

Mouse Nkrp1a receptor is a C-type lectin-like receptor expressed on the surface of natural killer cells that play an important role against virally infected and tumor cells. The recently solved crystal structure of Nkrp1a raises questions about a long loop region which was uniquely extended from the central region in the crystal. To understand the functional significance of the loop, the solution structure of Nkrp1a using nuclear magnetic resonance (NMR) spectroscopy was determined. A notable difference between the crystal and NMR structure of Nkrp1a appears in the conformation of the long loop region. While the extended loop points away from the central core and mediates formation of a domain swapped dimer in the crystal, the solution structure is monomeric with the loop tightly anchored to the central region. The findings described the first solution structure in the Nkrp1 family and revealed intriguing similarities and differences to the crystal structure. Proteins 2016; 84:1304-1311. © 2016 Wiley Periodicals, Inc.


Assuntos
Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Motivos de Aminoácidos , Animais , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Espectroscopia de Ressonância Magnética , Camundongos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 288(24): 17725-33, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23609447

RESUMO

Cellular cytotoxicity is the hallmark of NK cells mediating both elimination of virus-infected or malignant cells, and modulation of immune responses. NK cytotoxicity is triggered upon ligation of various activating NK cell receptors. Among these is the C-type lectin-like receptor NKp80 which is encoded in the human Natural Killer Gene Complex (NKC) adjacent to its ligand, activation-induced C-type lectin (AICL). NKp80-AICL interaction promotes cytolysis of malignant myeloid cells, but also stimulates the mutual crosstalk between NK cells and monocytes. While many activating NK cell receptors pair with ITAM-bearing adaptors, we recently reported that NKp80 signals via a hemITAM-like sequence in its cytoplasmic domain. Here we molecularly dissect the NKp80 hemITAM and demonstrate that two non-consensus amino acids, in particular arginine 6, critically impair both hemITAM phosphorylation and Syk recruitment. Impaired Syk recruitment results in a substantial attenuation of cytotoxic responses upon NKp80 ligation. Reconstituting the hemITAM consensus or Syk overexpression resulted in robust NKp80-mediated responsiveness. Collectively, our data provide a molecular rationale for the restrained activation potential of NKp80 and illustrate how subtle alterations in signaling motifs determine subsequent cellular responses. They also suggest that non-consensus alterations in the NKp80 hemITAM, as commonly present among mammalian NKp80 sequences, may have evolved to dampen NKp80-mediated cytotoxic responses toward AICL-expressing cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/imunologia , Lectinas Tipo C/fisiologia , Ativação Linfocitária , Proteínas Tirosina Quinases/metabolismo , Receptores de Células Matadoras Naturais/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/genética , Arginina/metabolismo , Linhagem Celular , Sequência Consenso , Citotoxicidade Imunológica , Expressão Gênica , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glicina/genética , Glicina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Matadoras Naturais/enzimologia , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Quinase Syk , Quinases da Família src/metabolismo
5.
Front Immunol ; 14: 1166451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051244

RESUMO

One would expect maternal immune cells to attack the invading trophoblast as the placenta is semi-allogenic. However, they appear to cooperate with the trophoblast in disrupting the arterial wall which has been determined in several studies. uNK cells are a particular type of immune cell that appears to play a role in pregnancy. As in pregnancy, the key contributors to trophoblast invasion appear to be a unique combination of genes, which appear to regulate multiple components of the interactions between placental and maternal cells, called HLA class 1b genes. The HLA class 1b genes have few alleles, which makes them unlikely to be recognized as foreign by the maternal cells. The low polymorphic properties of these particular HLAs may aid trophoblasts in actively avoiding immune attacks. This review gives a complete description of the mechanisms of interaction between HLAs and maternal uNK cells in humans.


Assuntos
Placenta , Útero , Gravidez , Feminino , Humanos , Células Matadoras Naturais , Trofoblastos , Antígenos HLA
6.
Front Immunol ; 13: 814334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572602

RESUMO

NKG2C+ natural killer (NK) cell plays a vital role in CMV infection control after hematopoietic stem cell transplantation (HSCT). However, the modulation on NKG2C+ NK cell reconstitution is still unclear. NK cell education is affected by the interactions of HLA-I/killer immunoglobulin receptor (KIR). Our aim is to figure out which HLA-I/KIR interaction plays a dominant role in NKG2C+ NK education. Based on allogeneic haploidentical HSCT, we investigated the expansion and function of single KIR positive NKG2C+ NK cells via the interaction of KIR with both donor HLA and recipient HLA at days 30, 90, and 180 after HSCT. KIR2DL2/L3 single-positive/NKG2C+ cells were significantly expanded compared with KIR2DL1 or KIR3DL1 single-positive/NKG2C+ cells when donors and recipients were both HLA-C1/C1 or HLA-C1C1BW4 (p < 0.05), with higher NKp30 expression (p < 0.05). Moreover, the proportion of single KIR positive NK cells increased in both NKG2C+/NKG2A- NK cells and conventional NKG2C-/NKG2A- NK cells over time. We also observed that increased proportion of KIR2DL2/L3 single-positive/NKG2C+ NK cells correlated with higher incidence of acute graft-versus-host disease (aGVHD). Our study allows a better understanding of HLA-I/KIR interaction in the NKG2C+ NK cell education after HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/metabolismo , Antígenos HLA-C/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Incidência , Células Matadoras Naturais/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Receptores KIR2DL2/genética , Receptores KIR2DL2/metabolismo
7.
Biotechnol Adv ; 58: 107944, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35301089

RESUMO

The C-type lectin-like fold (CTL fold) is a building block of many proteins, including saccharide-binding lectins, natural killer cell receptors, macrophage mannose receptor, selectins, collectins, snake venoms and others. Some are important players in innate immunity and are involved in the first-line response to virally infected cells or cancer cells, some play a role in antimicrobial defense, and some are potential targets for fight against problems connected with allergies, obesity, and autoimmunity. The structure of a CTL domain typically contains two α-helices, two small ß-sheets and a long surface loop, with two or three disulfide bridges stabilizing the structure. This small domain is often involved in interactions with a target molecule, however, utilizing varied parts of the domain surface, with or without structural modifications. More than 500 three-dimensional structures of CTL fold-containing proteins are available in the Protein Data Bank, including a significant number of complexes with their key interacting partners (protein:protein complexes). The amount of available structural data enables a detailed analysis of the rules of interaction patterns utilized in activation, inhibition, attachment, and other pathways or functionalities. Interpretation of known CTL receptor structures and all other CTL-containing proteins and complexes with described three-dimensional structures, complemented with sequence/structure/interaction correlation analysis, offers a comprehensive view of the rules of interaction patterns of the CTL fold. The results are of value for prediction of interaction behavior of so far not understood CTL-containing proteins and development of new protein binders based on this fold, with applications in biomedicine or biotechnologies. It follows from the available structural data that almost the whole surface of the CTL fold is utilized in protein:protein interactions, with the heaviest frequency of utilization in the canonical interaction region. The individual categories of interactions differ in the interface buildup strategy. The strongest CTL binders rely on interfaces with large interaction area, presence of hydrophobic core, or high surface complementarity. The typical interaction surfaces of the fold are not conserved in amino acid sequence and can be utilized in design of new binders for biotechnological applications.


Assuntos
Lectinas Tipo C , Sequência de Aminoácidos , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo
8.
Mol Immunol ; 135: 217-225, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932686

RESUMO

Ly49Q is an ITIM-bearing MHC class I receptor that is highly expressed in plasmacytoid dendritic cells (pDCs). Ly49Q is required for the TLR9-mediated IFN-I production in pDCs, although the mechanism is not fully understood. We here demonstrate that Ly49Q protects pDCs from pyroptotic cell death induced by CpG oligodeoxynucleotides (CpG). In the Ly49Q-deficient (Klra17-/-) mouse spleen, the number of ssDNA-positive pDCs increased significantly after CpG treatment, strongly suggesting that Klra17-/- pDCs were susceptible to CpG-induced cell death. In Klra17-/- bone-marrow-derived dendritic cells (BMDCs), CpG-induced cell death was accompanied by increased cathepsin B leakage from the vesicular compartments into the cytoplasm. Concurrently, IL-1ß secretion increased in the CpG-treated Klra17-/- BMDCs, strongly suggesting that the CpG-induced cell death in these cells is pyroptotic in nature. Consistent with these observations, inhibiting cathepsin B or caspase 1 in CpG-stimulated Klra17-/- BMDCs reversed the increase in cell death. Pyroptotic cell death and IL-1ß secretion were also observed in BMDCs derived from transgenic mice expressing an ITIM-less Ly49Q (Ly49Q-YF Tg). CpG also increased the IL-1ß production and cell death in B2m-/- BMDCs. These results suggest that Ly49Q and MHC class I play important roles for protecting pyroptosis-like cell death of DCs by influencing lysosome state.


Assuntos
Células Dendríticas/imunologia , Lisossomos/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Piroptose/imunologia , Animais , Caspase 1/metabolismo , Catepsina B/metabolismo , Membrana Celular/fisiologia , Células Cultivadas , Ilhas de CpG/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Oligodesoxirribonucleotídeos/genética
9.
Methods Mol Biol ; 2194: 255-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926371

RESUMO

The field of flow cytometry has witnessed rapid technological advancements in the last few decades. While the founding principles of fluorescent detection on cells (or particles) within a uniform fluid stream remains largely unchanged, the availability more sensitive cytometers with the ability to multiplex more and more florescent signals has resulted in very complex high-order assays. This results in the co-use of fluorophores with increased levels of emission overlap and/or spillover spreading than in years past and thus requires careful and well thought out planning for flow cytometry assay development. As an example, we present the development of a large 18-color (20 parameter) flow cytometry assay designed to take an in depth analysis of effector lymphocyte phenotypes, with careful attention to assay controls and panel design.


Assuntos
Citometria de Fluxo/métodos , Proteínas de Checkpoint Imunológico/metabolismo , Imunofenotipagem/métodos , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Anticorpos , Humanos , Células Matadoras Naturais/citologia , Células T Matadoras Naturais/citologia , Coloração e Rotulagem/métodos
10.
Cells ; 10(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069602

RESUMO

Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor-ligand interactions, including TCR-MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.


Assuntos
Comunicação Celular , Endocitose , Sistema Imunitário/metabolismo , Animais , Morte Celular , Antígenos de Histocompatibilidade/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Sistema Imunitário/patologia , Ligantes , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de IgG/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais
11.
Expert Opin Investig Drugs ; 28(8): 659-666, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31272246

RESUMO

Introduction: Pruritus is a common symptom associated with several potential underlying causes, including both dermatologic and systemic diseases; it can also occur without an identifiable cause. Current treatment options are limited and most patients experience impaired quality of life. Serlopitant is a neurokinin 1 (NK1) receptor antagonist under development for the treatment of pruritus associated with various dermatologic conditions and chronic pruritus of unknown origin. Areas covered: This review describes the epidemiology and unmet needs of patients with chronic pruritus, focusing specifically on patients with prurigo nodularis, psoriatic itch, and chronic pruritus of unknown origin; the rationale for targeting the NK1 receptor for treatment of chronic pruritus; and the clinical development of serlopitant, including efficacy and safety data from completed phase II studies. Expert opinion: There is an unmet need for novel, safe, and effective therapies to treat chronic pruritus. Serlopitant has shown promising efficacy, safety, and tolerability across different patient populations, including adolescents and elderly patients. In contrast to less convenient administration options, serlopitant is a once-daily oral tablet, which is expected to facilitate compliance.


Assuntos
Isoindóis/administração & dosagem , Antagonistas dos Receptores de Neurocinina-1/administração & dosagem , Prurido/tratamento farmacológico , Animais , Antipruriginosos/administração & dosagem , Antipruriginosos/efeitos adversos , Antipruriginosos/farmacologia , Doença Crônica , Humanos , Isoindóis/efeitos adversos , Isoindóis/farmacologia , Antagonistas dos Receptores de Neurocinina-1/efeitos adversos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Prurido/fisiopatologia , Qualidade de Vida , Receptores da Neurocinina-1/efeitos dos fármacos , Receptores da Neurocinina-1/metabolismo
12.
Eur J Pharm Sci ; 120: 162-171, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29730322

RESUMO

The purpose of this study was to investigate if AZD5329, a dual neurokinin NK1/2 receptor antagonist, is a suitable candidate for further development as an oral immediate release (IR) solid dosage form as a final product. The neutral form of AZD5329 has only been isolated as amorphous material. In order to search for a solid material with improved physical and chemical stability and more suitable solid-state properties, a salt screen was performed. Crystalline material of a maleic acid salt and a fumaric acid salt of AZD5329 were obtained. X-ray powder diffractiometry, thermogravimetric analysis, differential scanning calorimetry and dynamic vapor sorption were used to investigate the physicochemical characteristics of the two salts. The fumarate salt of AZD5329 is anhydrous, the crystallization is reproducible and the hygroscopicity is acceptable. Early polymorphism assessment work using slurry technique did not reveal any better crystal modification or crystallinity for the fumarate salt. For the maleate salt, the form isolated originally was found to be a solvate, but an anhydrous form was found in later experiments; by suspension in water or acetone, by drying of the solvate to 100-120 °C or by subjecting the solvate form to conditions of 40 °C/75%RH for 3 months. The dissolution behavior and the chemical stability (in aqueous solutions, formulations and solid-state) of both salts were also studied and found to be satisfactory. The compound displays sensitivity to low pH, and the salt of the maleic acid, which is the stronger acid, shows more degradation during stability studies, in line with this observation. The presented data indicate that the substance fulfils basic requirements for further development of an IR dosage form, based on the characterization on crystalline salts of AZD5329.


Assuntos
Fumaratos/química , Maleatos/química , Antagonistas dos Receptores de Neurocinina-1/química , Administração Oral , Varredura Diferencial de Calorimetria , Cristalização , Cristalografia por Raios X , Formas de Dosagem , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Fumaratos/administração & dosagem , Fumaratos/farmacologia , Umidade , Concentração de Íons de Hidrogênio , Maleatos/administração & dosagem , Maleatos/farmacologia , Antagonistas dos Receptores de Neurocinina-1/administração & dosagem , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Difração de Pó , Receptores da Neurocinina-2/antagonistas & inibidores , Receptores da Neurocinina-2/metabolismo , Solubilidade , Tecnologia Farmacêutica/métodos , Temperatura , Termogravimetria , Fatores de Tempo , Molhabilidade
13.
Oncotarget ; 9(43): 27171-27196, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29930758

RESUMO

BACKGROUND: Natural killer (NK) cells are lymphocytes of the innate immune system that have potent cytotoxic activity against tumor cells. NK cell recognition and activity towards cancer cells are regulated by an integrated interplay between numerous inhibitory and activating receptors acting in concert to eliminate tumor cells expressing cognate ligands. Despite strong evidence supporting the role of NK cells in breast cancer (BC) control, BC still develops and progresses to form large tumors and metastases. A major mechanism of BC escape from NK immunity is the alteration of the expression of NK receptor ligands. The aim of this study was to determine whether NK receptor ligands' mRNA expression might influence prognosis in BC patients and whether these effects differ by molecular subtypes and clinicopathological features. METHODS: We used the KM plotter platform to analyze the correlation between mRNA expression of 32 NK receptor ligands and relapse-free survival (RFS) and overall survival (OS) in 3951 and 1402 BC patients, respectively. The association with tumor subtypes and clinicopathological features was determined. BC samples were split into high and low expression groups according to the best cutoff value and the two patient cohorts were compared by Kaplan-Meier survival plots. The hazard ratios with 95% confidence intervals and log rank P values were calculated and FDR-adjusted for multiple testing correction. The data was considered to be statistically significant when FDR-adjusted P value < 0.05. RESULTS: High mRNA expression of around 80% of ligands for NK activating and inhibitory receptors associated with better RFS, which correlated with longer OS for only about half of the NK-activating ligands but for most NK-inhibitory ligands. Also, five NK-activating ligands correlated with worse prognosis. These prognostic values were differentially associated with the BC clinical criteria. In addition, the favorable prognostic influence of NK-activating ligands' upregulation, as a whole, was mainly significantly associated with HER2-positive and basal-like subtypes, lymph node positive phenotype, and high-grade tumors. CONCLUSIONS: NK receptor ligands appear to play an important role in defining BC patient prognosis. Identification of a group of patients with worse prognosis expressing high levels of NK-activating ligands and low levels of NK-inhibitory ligands makes them ideal potential candidates for NK-based immunotherapy to eliminate residual tumor cells, prevent relapse and improve patient survival.

14.
Curr Genomics ; 8(1): 51-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18645628

RESUMO

Major histocompatibility complex (MHC) class I and NK cell receptor gene regions are a paradigm of genomic plasticity as they reveal a considerable degree of diversity, exemplified by high allelic polymorphism, genomic duplications and contractions, and formation of gene families. Both genetic components show signs of rapid evolution due to strong selective pressure to combat pathogens. Comparative analyses of these genomic regions in various primates revealed considerable differences, reflecting species-specific adaptations to pathogenic threat or different strategies to combat infections. MHC and NK receptor genomic diversity in populations are important factors that determine susceptibility or resistance to a variety of diseases including autoimmune and infectious diseases as well as reproductive success.

15.
Oncoimmunology ; 6(4): e1293212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507799

RESUMO

Immunotherapy, via intra-vesical instillations of BCG, is the therapy of choice for patients with high-risk non-muscle invasive bladder cancer. The subsequent recruitment of lymphocytes and myeloid cells, as well as the release of cytokines and chemokines, is believed to induce a local immune response that eliminates these tumors, but the detailed mechanisms of action of this therapy are not well understood. Here, we have studied the phenotype and function of the responding lymphocyte populations as well as the spectrum of cytokines and chemokines produced in an in vitro model of human peripheral blood mononuclear cells (PBMCs) co-cultured with BCG. Natural killer (NK) cell activation was a prominent feature of this immune response and we have studied the expansion of this lymphocyte population in detail. We show that, after BCG stimulation, CD56dim NK cells proliferate, upregulate CD56, but maintain the expression of CD16 and the ability to mediate ADCC. CD56bright NK cells also contribute to this expansion by increasing CD16 and KIR expression. These unconventional CD56bright cells efficiently degranulated against bladder cancer cells and the expansion of this population required the release of soluble factors by other immune cells in the context of BCG. Consistent with these in vitro data, a small, but significant increase in the intensity of CD16 expression was noted in peripheral blood CD56bright cells from bladder cancer patients undergoing BCG therapy, that was not observed in patients treated with mitomycin-C instillations. These observations suggest that activation of NK cells may be an important component of the anti-tumoral immune response triggered by BCG therapy in bladder cancer.

16.
Am J Health Syst Pharm ; 74(11): 812-819, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28396308

RESUMO

PURPOSE: An expanding array of options for prevention and treatment of chemotherapy-induced nausea and vomiting (CINV), including regimens containing olanzapine or recently approved neurokinin 1 (NK1) receptor antagonists, are reviewed. SUMMARY: Up to 80% of patients receiving chemotherapy have CINV. Current practice guidelines recommend that patients treated with highly emetogenic chemotherapy also receive a 3-drug antiemetic regimen initiated on the day of and continued for 3 days after chemotherapy administration, with the most commonly used 3-drug regimen consisting of an NK1 receptor antagonist, a 5-hydroxytryptamine type 3 (5-HT3) receptor antagonist, and dexamethasone. Developments in the area of CINV management in recent years include the use of olanzapine in combination with a 5-HT3 antagonist and dexamethasone; Food and Drug Administration (FDA) approval of the NK1 receptor antagonist rolapitant, which provides a longer duration of effect than aprepitant; FDA approval of a combination product containing palonosetron and the NK1 receptor antagonist netupitant; and revisions of U.S. practice guidelines ending palonosetron's status as the preferred 5-HT3 antagonist for prevention of CINV associated with moderately or highly emetogenic chemotherapy. CONCLUSION: Newer therapeutic options for the management of CINV are equivalent to standard-of-care regimens in terms of efficacy and toxicity. While the NK1 receptor antagonist rolapitant and a product combining palonosetron and netupitant have potential advantages over standard therapy in terms of convenience or pharmacologic properties, their relatively high costs must be considered.


Assuntos
Náusea/induzido quimicamente , Vômito/induzido quimicamente , Antieméticos/uso terapêutico , Humanos , Náusea/prevenção & controle , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Olanzapina/uso terapêutico , Antagonistas da Serotonina/uso terapêutico , Vômito/prevenção & controle
17.
Front Immunol ; 8: 761, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713381

RESUMO

The unique features of gamma-delta (γδ) T cells, related to their antigen recognition capacity, their tissue tropism, and their cytotoxic function, make these cells ideal candidates that could be targeted to induce durable immunity in the context of different pathologies. In this review, we focus on the main characteristics of human γδ T-cell subsets in diseases and the key mechanisms that could be explored to target these cells.

18.
Front Immunol ; 7: 588, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018354

RESUMO

The major histocompatibility complex (MHC) class I chain-related A (MICA) is the most polymorphic non-classical MHC class I gene in humans. It encodes a ligand for NKG2D (NK group 2, member D), an activating natural killer (NK) receptor that is expressed mainly on NK cells and CD8+ T cells. The single-nucleotide polymorphism (SNP) rs1051792 causing a valine (Val) to methionine (Met) exchange at position 129 of the MICA protein is of specific interest. It separates MICA into isoforms that bind NKG2D with high (Met) and low affinities (Val). Therefore, this SNP has been investigated for associations with infections, autoimmune diseases, and cancer. Here, we systematically review these studies and analyze them in view of new data on the functional consequences of this polymorphism. It has been shown recently that the MICA-129Met variant elicits a stronger NKG2D signaling, resulting in more degranulation and IFN-γ production in NK cells and in a faster costimulation of CD8+ T cells than the MICA-129Val variant. However, the MICA-129Met isoform also downregulates NKG2D more efficiently than the MICA-129Val isoform. This downregulation impairs NKG2D-mediated functions at high expression intensities of the MICA-Met variant. These features of the MICA-129Met/Val dimorphism need to be considered when interpreting disease association studies. Particularly, in the field of hematopoietic stem cell transplantation, they help to explain the associations of the SNP with outcome including graft-versus-host disease and relapse of malignancy. Implications for future disease association studies of the MICA-129Met/Val dimorphism are discussed.

19.
Front Immunol ; 5: 192, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24829565

RESUMO

The innate immune response, in addition to the B- and T-cell response, plays a role in protection against dengue virus (DENV) infection and the degree of disease severity. Early activation of natural killer (NK) cells and type-I interferon-dependent immunity may be important in limiting viral replication during the early stages of DENV infection and thus reducing subsequent pathogenesis. NK cells may also produce cytokines that reduce inflammation and tissue injury. On the other hand, NK cells are also capable of inducing liver injury at early-time points of DENV infection. In vitro, NK cells can kill antibody-coated DENV-infected cells through antibody-dependent cell-mediated cytotoxicity. In addition, NK cells may directly recognize DENV-infected cells through their activating receptors, although the increase in HLA class I expression may allow infected cells to escape the NK response. Recently, genome-wide association studies have shown an association between MICB and MICA, which encode ligands of the activating NK receptor NKG2D, and dengue disease outcome. This review focuses on recognition of DENV-infected cells by NK cells and on the regulation of expression of NK cell ligands by DENV.

20.
Front Immunol ; 5: 123, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723923

RESUMO

Natural killer (NK) cells are key components of innate immune responses to tumors and viral infections. NK cell function is regulated by NK cell receptors that recognize both cellular and viral ligands, including major histocompatibility complex (MHC), MHC-like, and non-MHC molecules. These receptors include Ly49s, killer immunoglobulin-like receptors, leukocyte immunoglobulin-like receptors, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such as the stress-induced proteins MICA and ULBP. In addition, certain viruses have evolved MHC-like immunoevasins, such as UL18 and m157 from cytomegalovirus, that act as decoy ligands for NK receptors. A growing number of NK receptor-ligand interaction pairs involving non-MHC molecules have also been identified, including NKp30-B7-H6, killer cell lectin-like receptor G1-cadherin, and NKp80-AICL. Here, we describe crystal structures determined to date of NK cell receptors bound to MHC, MHC-related, and non-MHC ligands. Collectively, these structures reveal the diverse solutions that NK receptors have developed to recognize these molecules, thereby enabling the regulation of NK cytolytic activity by both host and viral ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA