Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(7): 779-794, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565242

RESUMO

The stem-loop 2 motif (s2m) in SARS-CoV-2 (SCoV-2) is located in the 3'-UTR. Although s2m has been reported to display characteristics of a mobile genomic element that might lead to an evolutionary advantage, its function has remained unknown. The secondary structure of the original SCoV-2 RNA sequence (Wuhan-Hu-1) was determined by NMR in late 2020, delineating the base-pairing pattern and revealing substantial differences in secondary structure compared to SARS-CoV-1 (SCoV-1). The existence of a single G29742-A29756 mismatch in the upper stem of s2m leads to its destabilization and impedes a complete NMR analysis. With Delta, a variant of concern has evolved with one mutation compared to the original sequence that replaces G29742 by U29742. We show here that this mutation results in a more defined structure at ambient temperature accompanied by a rise in melting temperature. Consequently, we were able to identify >90% of the relevant NMR resonances using a combination of selective RNA labeling and filtered 2D NOESY as well as 4D NMR experiments. We present a comprehensive NMR analysis of the secondary structure, (sub)nanosecond dynamics, and ribose conformation of s2m Delta based on heteronuclear 13C NOE and T 1 measurements and ribose carbon chemical shift-derived canonical coordinates. We further show that the G29742U mutation in Delta has no influence on the druggability of s2m compared to the Wuhan-Hu-1 sequence. With the assignment at hand, we identify the flexible regions of s2m as the primary site for small molecule binding.


Assuntos
Conformação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , RNA Viral/genética , RNA Viral/química , RNA Viral/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética/métodos , Regiões 3' não Traduzidas , Ligantes , Humanos , Mutação , COVID-19/virologia , Pareamento de Bases , Motivos de Nucleotídeos
2.
Magn Reson Chem ; 60(2): 255-260, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510530

RESUMO

In this paper, a complete 1 H and 13 C NMR data assignment of ent-polyalthic acid, a biologically active labdane-type diterpene, is presented. The assignments were carried on the basis of spectroscopic data from 1 H NMR, 13 C{1 H} NMR, gCOSY, gHMQC, and gHMBC experiments. Furthermore, a software-assisted methodology, using FOMSC3_rm_NB and NMR_MultSim programs, supported the detailed and unequivocal assignment of 1 H and 13 C signals, allowing all hydrogen coupling constants to be determined and thus clarifying all hydrogen signal multiplicities.


Assuntos
Diterpenos , Prótons , Isótopos de Carbono/química , Diterpenos/química , Espectroscopia de Ressonância Magnética/métodos
3.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897926

RESUMO

N-nitrosamines, which are well-known pro-mutagens, are found in drugs, pickled food and tobacco. Therefore, controlling their concentrations is very important. When an HPLC, GC or NMR analysis is conducted to investigate certain asymmetrical N-nitrosamines, two sets of signals attributed to the asymmetric N-nitrosamine isomers are usually observed. However, few reports on the NMR assignment of asymmetrical N-nitrosamine isomers have been published. In this study, we investigated the NMR assignments of the Z/E isomers of six asymmetrical N-nitrosamines by means of density functional theory (DFT) calculations. The configuration of the major isomer of asymmetrical N-nitrosamine 3 was the Z-configuration. The configuration of the major isomers of asymmetrical N-nitrosamines 4-7 was the E-configuration. Then, we determined the Z/E ratios of these asymmetrical N-nitrosamines by means of variable temperature (VT) and room temperature (RT) 1H-NMR experiments. The ratios of the Z/E isomer 3 quickly increased beyond 100% in the VT 1H NMR experiments. The ratios of Z/E isomers 4-7 were increased in the range of 10-60% in the VT 1H NMR experiments. The results of this study indicate that identifying the isomers of asymmetrical N-nitrosamine is necessary to control the quality of N-nitrosamines for active pharmaceutical ingredients (APIs).


Assuntos
Nitrosaminas , Teoria da Densidade Funcional , Isomerismo , Espectroscopia de Ressonância Magnética , Nitrosaminas/análise , Preparações Farmacêuticas
4.
Magn Reson Chem ; 59(11): 1107-1115, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33818821

RESUMO

Four manufacturing impurities of D&C Red No. 33 isolated by counter-current chromatography were analyzed by NMR and ESI mass spectrometry. Three of these impurities were reported previously with minimal details of structural determination. All four are structurally related to the main component of the dye. The fourth exhibited an unusual discrepancy between the NMR structure and its chemical formula suggested by ESI-MS results. Structural determination and assignment of the main component and four impurities are discussed as well as resolution of the discrepancy between the NMR and ESI-MS results of the fourth impurity.

5.
Molecules ; 26(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535444

RESUMO

Uniformly 13C- and 15N-labeled samples ensure fast and reliable nuclear magnetic resonance (NMR) assignments of proteins and are commonly used for structure elucidation by NMR. However, the preparation of uniformly labeled samples is a labor-intensive and expensive step. Reducing the portion of 13C-labeled glucose by a factor of five using a fractional 20% 13C- and 100% 15N-labeling scheme could lower the total chemical costs, yet retaining sufficient structural information of uniformly [13C, 15N]-labeled sample as a result of the improved sensitivity of NMR instruments. Moreover, fractional 13C-labeling can facilitate reliable resonance assignments of sidechains because of the biosynthetic pathways of each amino-acid. Preparation of only one [20% 13C, 100% 15N]-labeled sample for small proteins (<15 kDa) could also eliminate redundant sample preparations of 100% 15N-labeled and uniformly 100% [13C, 15N]-labeled samples of proteins. We determined the NMR structures of a small alpha-helical protein, the C domain of IgG-binding protein A from Staphylococcus aureus (SpaC), and a small beta-sheet protein, CBM64 module using [20% 13C, 100% 15N]-labeled sample and compared with the crystal structures and the NMR structures derived from the 100% [13C, 15N]-labeled sample. Our results suggest that one [20% 13C, 100% 15N]-labeled sample of small proteins could be routinely used as an alternative to conventional 100% [13C, 15N]-labeling for backbone resonance assignments, NMR structure determination, 15N-relaxation analysis, and ligand-protein interaction.


Assuntos
Isótopos de Carbono/análise , Celulase/química , Isótopos de Nitrogênio/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Proteína Estafilocócica A/química , Estrutura Secundária de Proteína , Tetrahymena thermophila/enzimologia
6.
J Biomol NMR ; 74(6-7): 311-319, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415582

RESUMO

Monoclonal antibody (mAb) drugs are clinically important for the treatment of various diseases. TTAC-0001 is under development as a new anti-cancer antibody drug targeting VEGFR-2. As the less severe toxicity of TTAC-0001 compared to Bevacizumab, likely due to the decreased in vivo half-life, seems to be related to its structural flexibility, it is important to map the exact flexible regions. Although the 13C/15N-labeled protein is required for NMR analyses, it is difficult to obtain antibody fragments (Fab and scFv) containing disulfide bonds through general cytosolic expression in Escherichia coli (E. coli). Here, we notably increased the periplasmic expression of the 13C/15N-labeled TTAC-0001-Fab (13C/15N-TTAC-Fab) through simple isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction at an increased optical density (1.5 OD600nm). Through NMR triple resonance experiments, two loop insertions (LI-1 between the VH and CH1; LI-2 between the VL and CL) were confirmed to be highly flexible. The additional LIs could be another way to engineer the antibody by changing the pharmacokinetic properties.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Anticorpos Monoclonais Humanizados/genética , Isótopos de Carbono , Dissulfetos/química , Escherichia coli/genética , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Isopropiltiogalactosídeo , Marcação por Isótopo , Isótopos de Nitrogênio , Periplasma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
J Biomol NMR ; 73(1-2): 59-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30771052

RESUMO

A flexible and scalable approach for protein NMR is introduced that builds on rapid data collection via projection spectroscopy and analysis of the spectral input data via joint decomposition. Input data may originate from various types of spectra, depending on the ultimate goal: these may result from experiments based on triple-resonance pulse sequences, or on TOCSY or NOESY sequences, or mixtures thereof. Flexible refers to the free choice of spectra for the joint decompositions depending on the purpose: assignments, structure, dynamics, interactions. Scalable means that the approach is open to the addition of similar or different experiments, e.g. larger proteins may require a wider selection of triple-resonance based experiments. Central to the proposed approach is the mutual support among the different spectra during the spectral analysis: for example, sparser triple-resonance spectra may help decomposing (separating) spin systems in a TOCSY or identifying unique NOEs. In the example presented, backbone plus side chain assignments of ubiquitin were obtained from the combination of either two or three of the following projection experiments: a 4D HCCCONH, a 4D HNCACO and a 3D HNCACB. In all cases, TOCSY data (4D HCCCONH) proved crucial not only for the side chain assignments, but also for the sequential assignment. Even when total recording time was reduced to about 10 h, nearly complete assignments were obtained, with very few missing assignments and even fewer differences to a reference.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Sequência de Aminoácidos , Ubiquitina/química
8.
J Biomol NMR ; 72(3-4): 139-148, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30414042

RESUMO

The C-terminal domain of histone H1.0 (C-H1.0) is involved in DNA binding and is a main determinant of the chromatin condensing properties of histone H1.0. Phosphorylation at the (S/T)-P-X-(K/R) motifs affects DNA binding and is crucial for regulation of C-H1.0 function. Since C-H1.0 is an intrinsically disordered domain, solution NMR is an excellent approach to characterize the effect of phosphorylation on the structural and dynamic properties of C-H1.0. However, its very repetitive, low-amino acid-diverse and Pro-rich sequence, together with the low signal dispersion observed at the 1H-15N HSQC spectra of both non- and tri-phosphorylated C-H1.0 preclude the use of standard 1H-detected assignment strategies. We have achieved an essentially complete assignment of the heavy backbone atoms (15N, 13C' and 13Cα), as well as 1HN and 13Cß nuclei, of non- and tri-phosphorylated C-H1.0 by applying a novel 13C-detected CON-based strategy. No C-H1.0 region with a clear secondary structure tendency was detected by chemical shift analyses, confirming at residue level that C-H1.0 is disordered in aqueous solution. Phosphorylation only affected the chemical shifts of phosphorylated Thr's, and their adjacent residues. Heteronuclear {1H}-15N NOEs were also essentially equal in the non- and tri-phosphorylated states. Hence, structural tendencies and dynamic properties of C-H1.0 free in aqueous solution are unmodified by phosphorylation. We propose that the assignment strategy used for C-H1.0, which is based on the acquisition of only a few 3D spectra, is an excellent choice for short-lived intrinsically disordered proteins with repetitive sequences.


Assuntos
Histonas/química , Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , Fosforilação , Domínios Proteicos , Estrutura Secundária de Proteína , Treonina
9.
J Biomol NMR ; 72(3-4): 115-124, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30465113

RESUMO

Aromatic amino-acid side chains are essential components for the structure and function of proteins. We present herein a set of NMR experiments for time-efficient resonance assignment of histidine and tyrosine side chains in uniformly 13C/15N-labeled proteins. The use of band-selective 13C pulses allows to deal with linear chains of coupled spins, thus avoiding signal loss that occurs in branched spin systems during coherence transfer. Furthermore, our pulse schemes make use of longitudinal 1H relaxation enhancement, Ernst-angle excitation, and simultaneous detection of 1H and 13C steady-state polarization to achieve significant signal enhancements.


Assuntos
Histidina , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Tirosina , Algoritmos , Isótopos de Carbono , Isótopos de Nitrogênio , Conformação Proteica
10.
Biomol NMR Assign ; 17(2): 167-171, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233945

RESUMO

Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from Burkholderia mallei in Escherichia coli to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.


Assuntos
Proteína de Transporte de Acila , Burkholderia mallei , Proteína de Transporte de Acila/metabolismo , Burkholderia mallei/metabolismo , Ressonância Magnética Nuclear Biomolecular , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo
11.
Biomol NMR Assign ; 17(2): 223-227, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37498448

RESUMO

Ostrinia nubilalis, also known as European Corn Borer (ECB), is a serious pest in Europe and North America, as well as in Central Asia and Northern Africa. It damages a variety of agricultural crops such as corn, oats, buckwheat, millet, and soybeans. causing annually at least one billion dollars in loss. The Ostrinia nubilalis pheromone-binding protein3 (OnubPBP3), preferentially expressed in the male moth antenna, has been implicated in the detection of the female-secreted pheromone blend during the mating process. Understanding the structure of and function of OnubPBP3, including the mechanism of pheromone binding and its release at the dendritic olfactory neuron (ORN), is essential if integrated pest management through sensory inhibition is to be achieved. We report here the backbone and side-chain resonance assignments of OnubPBP3 at pH 6.5 using various triple resonance NMR experiments on a 13C, 15N-labeled protein sample. The secondary structure of OnubPBP3 consists of six α-helices and an unstructured C-terminus based on backbone chemical shifts.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Masculino , Feminino , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia , Atrativos Sexuais/fisiologia , Ressonância Magnética Nuclear Biomolecular , Mariposas/metabolismo , Feromônios , Agricultura
12.
Biomol NMR Assign ; 15(2): 449-453, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34417717

RESUMO

KIN is a DNA/RNA-binding protein conserved evolutionarily from yeast to humans and expressed ubiquitously in mammals. It is an essential nuclear protein involved in numerous cellular processes, such as DNA replication, class-switch recombination, cell cycle regulation, and response to UV or ionizing radiation-induced DNA damage. The C-terminal region of the human KIN (hKIN) protein is composed of an SH3-like tandem domain, which is crucial for the anti-proliferation effect of the full-length protein. Herein, we present the 1H, 15N, and 13C resonances assignment of the backbone and side chains for the SH3-like tandem domain of the hKIN protein, as well as the secondary structure prediction based on the assigned chemical shifts using TALOS-N software. This work prepares the ground for future studies of RNA-binding and backbone dynamics.


Assuntos
Domínios de Homologia de src
13.
Biomol NMR Assign ; 15(2): 421-425, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34296398

RESUMO

Human Atg3 (hAtg3) is an E2-like enzyme that catalyzes the conjugation of LC3 family proteins to phosphatidylethanolamine (PE) lipids in the autophagosomal membrane during autophagy. The reaction product, LC3-PE, acts as a marker for autophagic cargo and is required for the effective construction of functional autophagosomes. However, the structural and molecular basis of this conjugation reaction remains elusive, at least in part, because of the absence of lipid bilayers in structural studies conducted to date. Here, we report a sequential resonance assignment for an hAtg3 construct both in aqueous solution and in bicelles. hAtg3 has 314 residues, and our construct lacks the unstructured region from residues 90 to 190. Our results demonstrate a structural rearrangement of hAtg3 N-terminus when it interacts with membranes.


Assuntos
Proteínas Relacionadas à Autofagia
14.
Biomol NMR Assign ; 15(1): 153-157, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33389548

RESUMO

Coronaviruses have become of great medical and scientific interest because of the Covid-19 pandemic. The hCoV-HKU1 is an endemic betacoronavirus that causes mild respiratory symptoms, although the infection can progress to severe lung disease and death. During viral replication, a discontinuous transcription of the genome takes place, producing the subgenomic messenger RNAs. The nucleocapsid protein (N) plays a pivotal role in the regulation of this process, acting as an RNA chaperone and participating in the nucleocapsid assembly. The isolated N-terminal domain of protein N (N-NTD) specifically binds to the transcriptional regulatory sequences and control the melting of the double-stranded RNA. Here, we report the resonance assignments of the N-NTD of HKU1-CoV.


Assuntos
Betacoronavirus/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Espectroscopia de Ressonância Magnética , Isótopos de Carbono , Escherichia coli/metabolismo , Hidrogênio , Isótopos de Nitrogênio , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Software
15.
Biomol NMR Assign ; 14(1): 115-118, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975054

RESUMO

Ostrinia furnacalis, a lepidopteran moth, is an invasive pest found in Asia, Australia, Africa, and parts of the United States. The O. furnacalis pheromone-binding protein2 (OfurPBP2), present in the male moth antenna, plays a role in the detection of female-secreted pheromone in a process that leads to mating. To understand the structural mechanism of pheromone binding and release in this pest, we have initiated characterization of OfurPBP2 by solution NMR. Here, we report the backbone resonance assignments and the secondary structural elements of OfurPBP2 at pH 6.5 using uniformly 13C, 15N-labeled protein with various triple resonance NMR experiments. The assignments are 97% completed for backbone and 88% completed for side-chain resonances. The secondary structure of OfurPBP2, based on backbone chemical shifts, consists of eight α-helices, including a well-structured C-terminal helix.


Assuntos
Agricultura , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proteínas de Transporte/química , Proteínas de Insetos/química , Mariposas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Prótons por Ressonância Magnética , Animais , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
16.
Biomol NMR Assign ; 14(1): 123-130, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31993958

RESUMO

Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be essential for infection, although how this binding event promotes infection is unknown. Recent studies have shown that 60% of all GII.4 epidemic strains may undergo a spontaneous post-translational modification (PTM) in an amino acid located adjacent to the binding pocket for HBGAs. This transformation proceeds with an estimated half-life of 1-2 days under physiological conditions, dramatically affecting HBGA recognition. The surface-exposed position of this PTM and its sequence conservation suggests a relevant role in immune escape and host-cell recognition. As a first step towards the understanding of the biological implications of this PTM at atomic resolution, we report the complete assignment of methyl resonances of a MILProSVProSA methyl-labeled sample of a 72 kDa protruding domain from a GII.4 Saga human norovirus strain. Assignments were obtained from methyl-methyl NOESY experiments combined with site-directed mutagenesis and automated assignment. This data provides the basis for a detailed characterization of the PTM-driven modulation of immune recognition in human norovirus on a molecular level.


Assuntos
Aminoácidos/química , Norovirus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Virais/química , Cristalografia por Raios X , Humanos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Multimerização Proteica
17.
Biomol NMR Assign ; 13(2): 281-286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31030336

RESUMO

Ligand binding RNAs such as artificially created RNA-aptamers are structurally highly diverse. Therefore, they represent important model systems for investigating RNA-folding, RNA-dynamics and the molecular recognition of chemically very different ligands, ranging from small molecules to whole cells. High-resolution structures of RNA-aptamers in complex with their cognate ligands often reveal unexpected tertiary structure elements. Recent studies on different classes of aptamers binding the nucleotide triphosphate GTP as a ligand showed that these systems not only differ widely in binding affinity but also in their ligand binding modes and structural complexity. We initiated the NMR-based structure determination of the high-affinity binding GTP-aptamer 9-12 in order to gain further insights into the diversity of ligand binding modes and structural variability of those aptamers. Here, we report 1H, 13C and 15N resonance assignments for the GTP 9-12-aptamer bound to GTP as the prerequisite for the structure determination by solution NMR.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Guanosina Trifosfato/metabolismo , Ressonância Magnética Nuclear Biomolecular , Aptâmeros de Nucleotídeos/genética , Sequência de Bases
18.
Biomol NMR Assign ; 12(1): 11-14, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28861857

RESUMO

Human guanylate kinase (hGMPK) is a critical enzyme that, in addition to phosphorylating its physiological substrate (d)GMP, catalyzes the second phosphorylation step in the conversion of anti-viral and anti-cancer nucleoside analogs to their corresponding active nucleoside analog triphosphates. Until now, a high-resolution structure of hGMPK is unavailable and thus, we studied free hGMPK by NMR and assigned the chemical shift resonances of backbone and side chain 1H, 13C, and 15N nuclei as a first step towards the enzyme's structural and mechanistic analysis with atomic resolution.


Assuntos
Guanilato Quinases/química , Ressonância Magnética Nuclear Biomolecular , Humanos
19.
Biomol NMR Assign ; 12(2): 329-334, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051308

RESUMO

Riboswitches are structured RNA elements in the 5'-untranslated regions of bacterial mRNAs that are able to control the transcription or translation of these mRNAs in response to the specific binding of small molecules such as certain metabolites. Riboswitches that bind with high specificity to either S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) are widespread in bacteria. Based on differences in secondary structure and sequence these riboswitches can be grouped into a number of distinct classes. X-ray structures for riboswitch RNAs in complex with SAM or SAH established a structural basis for understanding ligand recognition and discrimination in many of these riboswitch classes. One class of riboswitches-the so-called SAM/SAH riboswitch class-binds SAM and SAH with similar affinity. However, this class of riboswitches is structurally not yet characterized and the structural basis for its unusual bispecificity is not established. In order to understand the ligand recognition mode that enables this riboswitch to bind both SAM and SAH with similar affinities, we are currently determining its structure in complex with SAH using NMR spectroscopy. Here, we present the NMR resonance assignment of the SAM/SAH binding riboswitch (env9b) in complex with SAH as a prerequisite for a solution NMR-based high-resolution structure determination.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Riboswitch , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Conformação de Ácido Nucleico
20.
Eur J Med Chem ; 143: 670-682, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220789

RESUMO

New estrogen receptor α (ERα) antagonists - 3,20-dihydroxy-19-norpregna-1,3,5(10)-trienes containing an additional carbocyclic ring D' at the 16α,17α positions - were synthesized. The effects of the new compounds on the MCF-7 breast cancer cells and ERα activation were investigated. All the steroids studied were synthesized starting from estrone methyl ether. The scaffold of compounds containing the six-membered ring D' was constructed via the Diels-Alder reaction of butadiene with 3-methoxy-19-norpregna-1,3,5(10),16-tetraen-20-one 5. The hydrogenation of primary 16α,17α-cyclohexeno-adduct 7 followed by 3-demethylation (by HBr-AcOH) and reduction of 20-oxo group (by LiAlH4) or in one step by DIBAH gave target mono- and dihydroxy steroids 9-11. The Corey-Chaykovsky reaction of the same 3-methoxy-19-norpregna-1,3,5(10),16-tetraen-20-one 5 gave 16α,17α-methylene-substituted compound. The reaction of the latter with DIBAH immediately yielded 3,20-dihydroxy-16α,17α-methyleno-19-norpregna-1,3,5(10)-triene 13. The same procedures using 3-methoxy-19-norpregna-1,3,5(10),16-tetraen-20-one 5 produced corresponding 3,20-dihydroxy-16,17-19-norpregna-1,3,5(10)-triene 16 and 3,20-dihydroxy-19-norpregna-1,3,5(10),16-tetraene 17. All compounds were fully characterized by 1D and 2D NMR, HRMS, and X-ray diffraction. The molecular docking showed that the target compounds can bind to ER, their binding mode being similar to that of natural estradiol. 16α,17α-Methylene- or unsubstituted compounds exhibit the highest cytotoxicity against MCF-7 cells, being simultaneously relatively weak ERα inhibitors. 3,20-Dihydroxy steroids containing the six-membered ring D' proved to be the most effective ERα inhibitors. These compounds displayed moderate cytotoxicity comparable of that of tamoxifen and showed no toxic effect on MCF-10A normal, nontumorigenic epithelial cells. The new ER antagonists were found to be good candidates for further testing as agents for the treatment and prevention of ERα-positive breast cancers.


Assuntos
Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Norpregnatrienos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Norpregnatrienos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA