Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(13): e112559, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37259596

RESUMO

Metastatic colonization of distant organs accounts for over 90% of deaths related to solid cancers, yet the molecular determinants of metastasis remain poorly understood. Here, we unveil a mechanism of colonization in the aggressive basal-like subtype of breast cancer that is driven by the NAD+ metabolic enzyme nicotinamide N-methyltransferase (NNMT). We demonstrate that NNMT imprints a basal genetic program into cancer cells, enhancing their plasticity. In line, NNMT expression is associated with poor clinical outcomes in patients with breast cancer. Accordingly, ablation of NNMT dramatically suppresses metastasis formation in pre-clinical mouse models. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation (H3K9me3) and DNA methylation at the promoters of PR/SET Domain-5 (PRDM5) and extracellular matrix-related genes. PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Depletion of PRDM5 in tumor cells decreases COL1A1 deposition and impairs metastatic colonization of the lungs. These findings reveal a critical activity of the NNMT-PRDM5-COL1A1 axis for cancer cell plasticity and metastasis in basal-like breast cancer.


Assuntos
Neoplasias , Nicotinamida N-Metiltransferase , Animais , Camundongos , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Neoplasias/metabolismo , Metilação de DNA , Epigênese Genética
2.
Gut ; 73(1): 63-77, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977555

RESUMO

OBJECTIVE: Early gastric cardia adenocarcinoma (EGCA) is a highly heterogeneous cancer, and the understanding of its classification and malignant progression is limited. This study explored the cellular and molecular heterogeneity in EGCA using single-cell RNA sequencing (scRNA-seq). DESIGN: scRNA-seq was conducted on 95 551 cells from endoscopic biopsies of low-grade intraepithelial neoplasia, well/moderately/poorly differentiated EGCA and their paired adjacent nonmalignant biopsy samples. Large-scale clinical samples and functional experiments were employed. RESULTS: Integrative analysis of epithelial cells revealed that chief cells, parietal cells and enteroendocrine cells were rarely detected in the malignant epithelial subpopulation, whereas gland and pit mucous cells and AQP5+ stem cells were predominant during malignant progression. Pseudotime and functional enrichment analyses showed that the WNT and NF-κB signalling pathways were activated during the transition. Cluster analysis of heterogeneous malignant cells revealed that NNMT-mediated nicotinamide metabolism was enriched in gastric mucin phenotype cell population, which was associated with tumour initiation and inflammation-induced angiogenesis. Furthermore, the expression level of NNMT was gradually increased during the malignant progression and associated with poor prognosis in cardia adenocarcinoma. Mechanistically, NNMT catalysed the conversion of nicotinamide to 1-methyl nicotinamide via depleting S-adenosyl methionine, which led to a reduction in H3K27 trimethylation (H3K27me3) and then activated the WNT signalling pathway to maintain the stemness of AQP5+ stem cells during EGCA malignant progression. CONCLUSION: Our study extends the understanding of the heterogeneity of EGCA and identifies a functional NNMT+/AQP5+ population that may drive malignant progression in EGCA and could be used for early diagnosis and therapy.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Cárdia/metabolismo , S-Adenosilmetionina , Células-Tronco Neoplásicas/metabolismo , Niacinamida , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Aquaporina 5
3.
Am J Physiol Cell Physiol ; 325(1): C29-C41, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212549

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) plays a pivotal role in regulating lipid metabolism and hepatic PPARγ transactivation contributes to fatty liver development. Fatty acids (FAs) are well-known endogenous ligands for PPARγ. Palmitate, a 16-C saturated FA (SFA) and the most abundant SFA in human circulation, is a strong inducer of hepatic lipotoxicity, a central pathogenic factor for various fatty liver diseases. In this study, using both alpha mouse liver 12 (AML12) and primary mouse hepatocytes, we investigated the effects of palmitate on hepatic PPARγ transactivation and underlying mechanisms, as well as the role of PPARγ transactivation in palmitate-induced hepatic lipotoxicity, all of which remain ambiguous currently. Our data revealed that palmitate exposure was concomitant with both PPARγ transactivation and upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis. Importantly, we discovered that PPARγ transactivation by palmitate was blunted by NNMT inhibition, suggesting that NNMT upregulation plays a mechanistic role in PPARγ transactivation. Further investigations uncovered that palmitate exposure is associated with intracellular NAD+ decline and NAD+ replenishment with NAD+-enhancing agents, nicotinamide and nicotinamide riboside, obstructed palmitate-induced PPARγ transactivation, implying that cellular NAD+ decline resulted from NNMT upregulation represents a potential mechanism behind palmitate-elicited PPARγ transactivation. At last, our data showed that the PPARγ transactivation marginally ameliorated palmitate-induced intracellular triacylglycerol accumulation and cell death. Collectively, our data provided the first-line evidence supporting that NNMT upregulation plays a mechanistic role in palmitate-elicited PPARγ transactivation, potentially through reducing cellular NAD+ contents.NEW & NOTEWORTHY Hepatic PPARγ transactivation contributes to fatty liver development. Saturated fatty acids (SFAs) induce hepatic lipotoxicity. Here, we investigated whether and how palmitate, the most abundant SFA in the human blood, affects PPARγ transactivation in hepatocytes. We reported for the first time that upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis, plays a mechanistic role in regulating palmitate-elicited PPARγ transactivation through reducing intracellular NAD+ contents.


Assuntos
Fígado Gorduroso , Palmitatos , Camundongos , Animais , Humanos , Palmitatos/toxicidade , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Regulação para Cima , NAD/metabolismo , Ativação Transcricional , PPAR gama/genética , PPAR gama/metabolismo , Hepatócitos/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Ácidos Graxos/metabolismo
4.
FASEB J ; 36(3): e22084, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35107844

RESUMO

Chronic kidney disease (CKD), a disease involving damage to the kidney structure and function, is a global public health problem. Tubulointerstitial fibrosis (TIF) is both an inevitable pathological change in individuals with CKD and a driving force in the progression of renal fibrosis. Nicotinamide N-methyltransferase (NNMT) and its metabolite 1-methylnicotinamide (MNAM) have been shown to protect against lipotoxicity-induced kidney tubular injury. However, the biological roles of NNMT and MNAM in regulating TIF remain elusive. This study aimed to investigate the protective effect of NNMT and MNAM on TIF and the mechanisms involved. We explored the functions and mechanisms of NNMT and MNAM in TIF, as well as the interaction between NNMT and MNAM, using unilateral ureteral obstruction (UUO) mice and cultured mouse tubular epithelial cells (mTECs) stimulated with transforming growth factor-ß1 (TGF-ß1). Several important findings were obtained as follows: (1) NNMT expression was upregulated in the kidneys of UUO mice and TGF-ß1-induced mTECs, and this upregulation was proposed to be a protective compensatory response to TIF. (2) MNAM was a potentially effective antifibrotic and anti-inflammatory medication in UUO mice. (3) The antifibrotic effect of NNMT overexpression was exerted by increasing the concentration of MNAM. (4) The renoprotective role of MNAM depended on the selective blockade of the interaction of Smad3 with TGFß receptor I. Overall, our study shows that NNMT is involved in the development and progression of CKD and that its metabolite MNAM may be a novel inhibitor of the TGF-ß1/Smad3 pathway with great therapeutic potential for CKD.


Assuntos
Fibrose/metabolismo , Niacinamida/análogos & derivados , Nicotinamida N-Metiltransferase/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/metabolismo , Obstrução Ureteral/metabolismo
5.
Mol Divers ; 27(3): 1255-1269, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35793051

RESUMO

Nicotinamide N-methyltransferase (NNMT) is a protein coding gene, which methylates the nicotinamide (NA) (vitamin B3) to produce 1-methylnicotinamide (MNA). Several studies have suggested that the overexpression of NNMT is associated with different metabolic disorders like obesity and type-2 diabetes thereby making it an important therapeutic target for development of anti-diabetic agents. Here we describe a workflow for identification of new inhibitors of NNMT from a library of small molecules. In this study, we have hypothesized a four-point pharmacophore model based on the pharmacophoric features of reported NNMT inhibitors in the literature. The statistically significant pharmacophore hypothesis was used to explore the Maybridge compound library that resulted in mapping of 1330 hit compounds on the proposed hypothesis. Subsequently, a total of eight high scoring compounds, showing good protein-ligand interactions in the molecular docking study, were selected for biological evaluation of NNMT activity. Eventually, four compounds were found to show significant inhibitory activity for NNMT and can be further explored to design new derivatives around the identified scaffolds with improved activities as NNMT inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Nicotinamida N-Metiltransferase , Humanos , Simulação de Acoplamento Molecular , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Ligantes , Obesidade
6.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108549

RESUMO

The Dental Pulp of permanent human teeth is home to stem cells with remarkable multilineage differentiation ability: human Dental Pulp Stem Cells (DPSCs). These cells display a very notorious expression of pluripotency core factors, and the ability to give rise to mature cell lineages belonging to the three embryonic layers. For these reasons, several researchers in the field have long considered human DPSCs as pluripotent-like cells. Notably, some signaling pathways such as Notch and Wnt contribute to maintaining the stemness of these cells through a complex network involving metabolic and epigenetic regulatory mechanisms. The use of recombinant proteins and selective pharmacological modulators of Notch and Wnt pathways, together with serum-free media and appropriate scaffolds that allow the maintenance of the non-differentiated state of hDPSC cultures could be an interesting approach to optimize the potency of these stem cells, without a need for genetic modification. In this review, we describe and integrate findings that shed light on the mechanisms responsible for stemness maintenance of hDPSCs, and how these are regulated by Notch/Wnt activation, drawing some interesting parallelisms with pluripotent stem cells. We summarize previous work on the stem cell field that includes interactions between epigenetics, metabolic regulations, and pluripotency core factor expression in hDPSCs and other stem cell types.


Assuntos
Células-Tronco Pluripotentes , Via de Sinalização Wnt , Humanos , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Epigênese Genética , Polpa Dentária
7.
Proc Natl Acad Sci U S A ; 116(32): 15957-15966, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341085

RESUMO

Nicotinamide adenine dinucleotide (NAD) provides an important link between metabolism and signal transduction and has emerged as central hub between bioenergetics and all major cellular events. NAD-dependent signaling (e.g., by sirtuins and poly-adenosine diphosphate [ADP] ribose polymerases [PARPs]) consumes considerable amounts of NAD. To maintain physiological functions, NAD consumption and biosynthesis need to be carefully balanced. Using extensive phylogenetic analyses, mathematical modeling of NAD metabolism, and experimental verification, we show that the diversification of NAD-dependent signaling in vertebrates depended on 3 critical evolutionary events: 1) the transition of NAD biosynthesis to exclusive usage of nicotinamide phosphoribosyltransferase (NamPT); 2) the occurrence of nicotinamide N-methyltransferase (NNMT), which diverts nicotinamide (Nam) from recycling into NAD, preventing Nam accumulation and inhibition of NAD-dependent signaling reactions; and 3) structural adaptation of NamPT, providing an unusually high affinity toward Nam, necessary to maintain NAD levels. Our results reveal an unexpected coevolution and kinetic interplay between NNMT and NamPT that enables extensive NAD signaling. This has implications for therapeutic strategies of NAD supplementation and the use of NNMT or NamPT inhibitors in disease treatment.


Assuntos
Evolução Biológica , NAD/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Vias Biossintéticas , Células HeLa , Humanos , Cinética , Nicotinamida N-Metiltransferase , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Filogenia , Especificidade por Substrato , Vertebrados/metabolismo
8.
Am J Physiol Cell Physiol ; 321(3): C585-C595, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378991

RESUMO

Defined as the dysfunction and/or cell death caused by toxic lipids accumulation in hepatocytes, hepatic lipotoxicity plays a pathological role in nonalcoholic fatty liver disease. The cellular and molecular mechanisms underlying lipotoxicity remain to be elucidated. In this study, using AML12 cells, a nontransformed murine hepatocyte cell line, exposed to palmitate (a 16-C saturated fatty acid) as an experimental model, we investigated the role and mechanisms of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing nicotinamide methylation and degradation, in hepatic lipotoxicity. We initially identified activating transcription factor 4 (ATF4) as a major transcription factor for hepatic NNMT expression. Here, we demonstrated that palmitate upregulates NNMT expression via activating ATF4 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent mechanism in that mTORC1 inhibition by both Torin1 and rapamycin attenuated ATF4 activation and NNMT upregulation. We further demonstrated that the mTORC1-dependent ATF4 activation is an integral signaling event of unfolded protein response (UPR) as both ATF4 activation and NNMT upregulation by tunicamycin, a well-documented endoplasmic reticulum (ER) stress inducer, are blunted when hepatocytes were pretreated with Torin1. Importantly, our data uncovered that NNMT upregulation contributes to palmitate-induced hepatotoxicity as NNMT inhibition, via either pharmacological (NNMT inhibitors) or genetic approach (siRNA transfection), provided protection against palmitate lipotoxicity. Our further mechanistic exploration identified protein kinase A (PKA) activation to contribute, at least, partially to the protective effect of NNMT inhibition against lipotoxicity. Collectively, our data demonstrated that NNMT upregulation by the mTORC1-ATF4 pathway activation contributes to the development of lipotoxicity in hepatocytes.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Hepatócitos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Palmitatos/toxicidade , Fator 4 Ativador da Transcrição/genética , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotinamida N-Metiltransferase/genética , Transdução de Sinais , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
9.
BMC Cancer ; 21(1): 67, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446144

RESUMO

BACKGROUND: The role of nicotinamide N-methyltransferase (NNMT) in ovarian cancer is still elusive. Our aim is to explore the expression of NNMT in ovarian cancer and to assess its association with patient prognosis and treatment response. METHODS: We first analyzed the differential expression of NNMT among fallopian tube epithelium, primary ovarian cancers, metastatic ovarian cancers, and recurrent ovarian cancers using Gene Expression Ominus (GEO) database (GSE10971, GSE30587, GSE44104 and TCGA datasets). Then, we assessed the association of NNMT expression with clinical and molecular parameters using CSIOVDB database and GSE28739 dataset. Next, we evaluate the association of NNMT expression with the prognosis of ovarian cancer patients in both GSE9891 dataset and TCGA dataset. Finally, GSE140082 dataset was used to explore the association of NNMT expression with bevacizumab response. RESULTS: NNMT expression was significantly elevated in lymphovascular space invasion (LVSI)-positive ovarian cancers compared with that in LVSI-negative ovarian cancers (TCGA dataset, P < 0.05), Moreover, increased expression of NNMT was associated with increased tumor stage, grade, and mesenchymal molecular subtype (CSIOVDB database). Survival analysis indicated that increased expression of NNMT was associated with a reduced OS in both GSE9891 dataset (HR: 2.28, 95%CI: 1.51-3.43, Log-rank P < 0.001) and TCGA dataset (HR: 1.55, 95%CI: 1.02-2.36, Log-rank P = 0.039). Multivariate analysis further confirmed the negative impact of NNMT expression on OS in ovarian cancer patients in those two datasets. Furthermore, the NNMT-related nomogram showed that NNMT shared a larger contribution to OS, compared with debulking status. More interestingly, bevacizumab conferred significant improvements in OS for patients with low NNMT expression (HR: 0.56, 95%CI: 0.31-0.99, Log-rank P = 0.049). In contrast, patients with high NNMT expression didn't benefit from bevacizumab treatment significantly (HR: 0.85, 95%CI: 0.48-1.49, Log-rank P = 0.561). NNMT expression was positively correlated with the expression of genes, LDHA and PGAM1, involved in Warburg effect. CONCLUSIONS: In conclusion, NNMT expression is associated with the aggressive behavior of ovarian cancer, correlates with a poor prognosis, and is predictive of sensitivity to bevacizumab treatment.


Assuntos
Bevacizumab/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias das Tubas Uterinas/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Nicotinamida N-Metiltransferase/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias das Tubas Uterinas/metabolismo , Neoplasias das Tubas Uterinas/secundário , Feminino , Seguimentos , Humanos , Metástase Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Nicotinamida N-Metiltransferase/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Taxa de Sobrevida
10.
J Hepatol ; 73(4): 783-793, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32389809

RESUMO

BACKGROUND & AIMS: N-nicotinamide methyltransferase (NNMT) is emerging as an important enzyme in the regulation of metabolism. NNMT is highly expressed in the liver. However, the exact regulatory mechanism(s) underlying NNMT expression remains unclear and its potential involvement in alcohol-related liver disease (ALD) is completely unknown. METHODS: Both traditional Lieber-De Carli and the NIAAA mouse models of ALD were employed. A small-scale chemical screening assay and a chromatin immunoprecipitation assay were performed. NNMT inhibition was achieved via both genetic (adenoviral short hairpin RNA delivery) and pharmacological approaches. RESULTS: Chronic alcohol consumption induces endoplasmic reticulum (ER) stress and upregulates NNMT expression in the liver. ER stress inducers upregulated NNMT expression in both AML12 hepatocytes and mice. PERK-ATF4 pathway activation is the main contributor to ER stress-mediated NNMT upregulation in the liver. Alcohol consumption fails to upregulate NNMT in liver-specific Atf4 knockout mice. Both adenoviral NNMT knockdown and NNMT inhibitor administration prevented fatty liver development in response to chronic alcohol feeding; this was also associated with the downregulation of an array of genes involved in de novo lipogenesis, including Srebf1, Acaca, Acacb and Fasn. Further investigations revealed that activation of the lipogenic pathway by NNMT was independent of its NAD+-enhancing action; however, increased cellular NAD+, resulting from NNMT inhibition, was associated with marked liver AMPK activation. CONCLUSIONS: ER stress, specifically PERK-ATF4 pathway activation, is mechanistically involved in hepatic NNMT upregulation in response to chronic alcohol exposure. Overexpression of NNMT in the liver plays an important role in the pathogenesis of ALD. LAY SUMMARY: In this study, we show that nicotinamide methyltransferase (NNMT) - the enzyme that catalyzes nicotinamide degradation - is a pathological regulator of alcohol-related fatty liver development. NNMT inhibition protects against alcohol-induced fatty liver development and is associated with suppressed de novo lipogenic activity and enhanced AMPK activation. Thus, our data suggest that NNMT may be a potential therapeutic target for the treatment of alcohol-related liver disease.


Assuntos
Estresse do Retículo Endoplasmático/genética , Fígado Gorduroso Alcoólico/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Nicotinamida N-Metiltransferase/genética , RNA/genética , Regulação para Cima , Animais , Células Cultivadas , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Hepatócitos/patologia , Camundongos , Camundongos Knockout , Nicotinamida N-Metiltransferase/biossíntese
11.
Eur J Clin Invest ; 50(4): e13220, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32129473

RESUMO

BACKGROUND: Odontogenic tumours are a group of rare heterogeneous diseases that range from hamartomatous tissue proliferations to benign and malignant neoplasms. Recurrences can occur after 10 years, so long-term clinical and radiological follow-up is required. The study of the molecular mechanisms involved in the development of these lesions is necessary to identify new prognostic markers. In this study, we evaluate the possible role of nicotinamide N-methyltransferase (NNMT) in ameloblastomas (AM) and odontogenic keratocysts (OKC). MATERIALS AND METHODS: A total of 105 surgical specimens of primary and recurrent lesions were obtained from 55 patients (25 AM, 30 OKC). In particular, 50 AMs (25 primary, 25 recurrences) and 55 OKCs (30 primary, 25 recurrences) were retrieved. We carried out immunohistochemical analyses to evaluate the cytoplasmic expression of NNMT, measuring the percentage of positive cells and the value of NNMT expression intensity. RESULTS: NNMT expression was significantly higher in recurrent than primary AMs (P = .0430). This result was confirmed by staining intensity, showing more cases with moderate/intense staining in recurrent AMs (P = .0470). NNMT expression was significantly lower in recurrent than primary OKC (P = .0014). Staining intensity showed more cases with moderate/intense staining in primary OKCs (P = .0276). CONCLUSIONS: This report is the first to evaluate NNMT expression in odontogenic lesions and to demonstrate a differential expression in recurrent AMs and OKCs, suggesting that there is potential for use of NNMT as prognostic marker.


Assuntos
Ameloblastoma/metabolismo , Neoplasias Maxilomandibulares/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Cistos Odontogênicos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ameloblastoma/patologia , Feminino , Humanos , Imuno-Histoquímica , Doenças Maxilomandibulares/metabolismo , Doenças Maxilomandibulares/patologia , Neoplasias Maxilomandibulares/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Cistos Odontogênicos/patologia , Estudos Retrospectivos , Adulto Jovem
12.
Breast Cancer Res ; 21(1): 64, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101119

RESUMO

BACKGROUND: Nicotinamide N-methyltransferase (NNMT) is overexpressed in various human tumors and involved in the development and progression of several carcinomas. In breast cancer, NNMT was found to be overexpressed in several cell lines. However, the clinical relevance of NNMT in breast cancer is not yet clear. METHODS: NNMT expression in breast carcinoma was examined by immunohistochemistry, and then, its relationship with patient clinicopathological characteristics was analyzed. The effects of NNMT on chemoresistance in breast cancer cells were assessed by cell viability, colony formation, and apoptosis assay. The NNMT, SIRT1, p53, and acetyl-p53 proteins, which are involved in NNMT-related chemoresistance, were examined by Western blotting. The SIRT1 mRNA was examined by real-time PCR, and its activity was measured by using the SIRT1 deacetylase fluorometric reagent kit. RESULTS: NNMT expression was significantly higher (53.9%) in breast carcinoma than in paracancerous tissues (10.0%) and breast hyperplasia (13.3%). A high level of NNMT expression correlated with poor survival and chemotherapy response in breast cancer patients who received chemotherapy. Ectopic overexpression of NNMT significantly inhibited the apoptotic cell death and suppression of colony formation induced by adriamycin and paclitaxel. Mechanistic studies revealed that NNMT overexpression increased SIRT1 expression and promoted its activity. Either inhibition of SIRT1 by EX527 or knockdown of SIRT1 by siRNA could reverse NNMT-mediated resistance to adriamycin and paclitaxel, which suggests that SIRT1 plays a critical role in NNMT-related chemoresistance in breast cancer. CONCLUSIONS: The results of this study demonstrate a novel correlation between the NNMT expression level and patient survival, suggesting that NNMT has the potential to become a new prognostic biomarker to predict the treatment outcomes of the clinical chemotherapy in breast cancer. Moreover, targeting NNMT or downstream SIRT1 may represent a new therapeutic approach to improve the efficacy of breast cancer chemotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Nicotinamida N-Metiltransferase/metabolismo , Sirtuína 1/metabolismo , Adulto , Idoso , Antineoplásicos/farmacologia , Apoptose/genética , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia , Imuno-Histoquímica , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Nicotinamida N-Metiltransferase/genética , Estabilidade Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Sirtuína 1/genética
13.
Mol Cell Biochem ; 460(1-2): 93-103, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31278587

RESUMO

Nicotinamide N-methyltransferase (NNMT) is an important methyltransferase involved in the biotransformation of many drugs and exogenous compounds. Abnormal expression of NNMT protein is closely associated with the onset and progression of many malignancies, but little is known about its role in esophageal squamous cell carcinoma (ESCC). Therefore, we aimed to explore whether NNMT plays any roles in carcinogenesis and metastasis in ESCC. NNMT expression was determined by immunohistochemistry in ESCC and corresponding adjacent normal tissues. Functional experiments were performed to elucidate the effects of NNMT knockdown on the proliferation, apoptosis, cell cycle, migration, and epithelial-mesenchymal transition (EMT) in EC9706 and TE1 cells. NNMT expression was significantly elevated in ESCC tissues compared with corresponding adjacent normal tissues. Moreover, a significant association emerged between NNMT expression and lymph node metastasis. SiRNA-mediated knockdown of NNMT in ESCC cells can significantly suppress cell viability and migration, induce cell cycle arrest, and promote cell apoptosis. In addition, NNMT downregulation led to the reversal of EMT, as reflected by upregulation of the intercellular adhesion molecule E-cadherin and downregulation of the mesenchymal markers N-cadherin and Vimentin. Further study found that NNMT knockdown suppressed the Wnt/ß-catenin signaling pathway. Taken together, these findings indicate that NNMT is a critical regulator of EMT in ESCC and may be a potential therapeutic target for ESCC metastasis.


Assuntos
Movimento Celular/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Nicotinamida N-Metiltransferase/genética , Via de Sinalização Wnt , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Nicotinamida N-Metiltransferase/metabolismo , RNA Interferente Pequeno/metabolismo
14.
Clin Oral Investig ; 23(2): 829-838, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29882109

RESUMO

OBJECTIVES: Oral squamous cell carcinoma (OSCC) is the most common malignancy of oral cavity. Despite advances in therapeutic approaches, the 5-year survival rate for oral cancer has not improved in the last three decades. Therefore, new molecular targets for early diagnosis and treatment of OSCC are needed. In the present study, we focused on the enzyme nicotinamide N-methyltransferase (NNMT). We have previously shown that enzyme expression is upregulated in OSCC and NNMT knockdown in PE/CA PJ-15 cells significantly decreased cell growth in vitro and tumorigenicity in vivo. MATERIAL AND METHODS: To further explore the role of the enzyme in oral cancer cell metabolism, HSC-2 cells were transfected with the NNMT expression vector (pcDNA3-NNMT) and the effect of enzyme upregulation on cell proliferation was evaluated by MTT assay. Subsequently, we investigated at molecular level the role of NNMT on apoptosis and cell proliferation, by exploring the expression of ß-catenin, survivin, and Ki-67 by real-time PCR. Moreover, we performed immunohistochemistry on 20 OSCC tissue samples to explore the expression level of NNMT and survivin ΔEx3 isoform. RESULTS: Enzyme upregulation significantly increased cell growth in vitro. Moreover, a positive correlation between NNMT and survivin ΔEx3 isoform expression levels was found both in HSC-2 cells and in OSCC tissue samples. CONCLUSION: Taken together, our results indicate a possible involvement of NNMT in the proliferation and tumorigenic capacity of OSCC cells and seem to suggest that the enzyme could represent a potential target for the treatment of oral cancer. CLINICAL RELEVANCE: The involvement of NNMT in cell growth and anti-apoptotic mechanisms seems to suggest that this enzyme could be a new therapeutic target to improve the survival of OSCC patients.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Neoplasias Bucais/enzimologia , Nicotinamida N-Metiltransferase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Apoptose , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
15.
Biochem Biophys Res Commun ; 507(1-4): 203-210, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30446221

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has increased worldwide in recent years. NAFLD is classified into two types, nonalcoholic fatty liver (NAFL), with few complications, and nonalcoholic steatohepatitis (NASH), which leads to liver cirrhosis or cancer. This study was based on previous reports that N1-methylnicotinamide (MNA) can stabilise sirtuin 1 protein, leading to decreased lipid levels in the liver. We hypothesised that fatty liver improvement by MNA would be further enhanced by suppressing its rapid metabolism by aldehyde oxidase in the liver. To test this, hydralazine (HYD), a potent aldehyde oxidase inhibitor, was administered orally to NAFL model rats. Liver triglyceride (TG) levels in the model were nearly unchanged by administration of MNA alone. In contrast, TG levels were marked decreased in NAFL rats treated with a combination of MNA and HYD. In addition, TG levels were decreased even in NAFL rats treated with only HYD. These findings supported our hypothesis that maintaining MNA concentrations in the liver, by suppressing MNA metabolism, would at least partially ameliorate fatty liver.


Assuntos
Aldeído Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Niacinamida/análogos & derivados , Aldeído Oxidase/metabolismo , Animais , Disponibilidade Biológica , Citosol/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Hidralazina , Concentração Inibidora 50 , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Ratos Sprague-Dawley
16.
Arch Biochem Biophys ; 644: 81-92, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526533

RESUMO

Currently, there is a worldwide increase of patients with type 2 diabetes (T2D). During the progression of healthy obese to T2D status, there is an influx of immune cells, in particular macrophages, into visceral adipose tissue, accompanied by an increase of inflammatory cytokines, such as, IL6, TNFα and Hp. To get a better insight in the underlying mechanisms, we performed a quantitative LCMS analysis on a modified in vitro assay, combining 3T3L1 adipocytes and activated RAW264.7 macrophages, thus mimicking inflamed adipose tissue. Clinically known proteins, e.g. IL6, TNFα, AdipoQ, complement factor C3, B and D were identified, thus confirming the assay. In addition, we found 54 new proteins that can potentially be used for research into the mechanism of T2D. Comparison of our results to a study on human visceral fat of obese non-diabetic and obese diabetic subjects, indicated that AUH, NAGK, pCYT2, NNMT, STK39 and CSNK2A2 might indeed be linked to insulin resistance in humans. Moreover, the expression of some of these genes was also altered in human blood samples at early or later stages of insulin desensitization. Overall, we conclude that the direct contact co-culture of 3T3L1 adipocytes with activated macrophages could be a mechanistically relevant and partially translational model of inflamed visceral adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Macrófagos/patologia , Masculino , Camundongos , Obesidade/patologia , Células RAW 264.7
17.
Bioorg Med Chem Lett ; 28(5): 922-925, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29433927

RESUMO

Nicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ∼80% at 2 h when dosed in mice orally at 50 mg/kg.


Assuntos
Inibidores Enzimáticos/farmacologia , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Niacinamida/síntese química , Niacinamida/química , Nicotinamida N-Metiltransferase/metabolismo , Relação Estrutura-Atividade
18.
Cell Mol Biol (Noisy-le-grand) ; 64(7): 51-55, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29974846

RESUMO

Renal cell carcinoma (RCC) is the most common tumor of the kidney and its major histologic subtype is clear cell RCC (ccRCC). About 30% of diagnosed ccRCCs already have metastasis. Traditionally, localized ccRCC is treated with nephrectomy but the relapse rate is 30%. Thus, the discovery of effective biomarkers for early detection, as well as the identification of new targets for molecular-based therapy of ccRCC are urgently required. In this study, we focused on molecules that could modulate the trascription of the enzyme nicotinamide N-methyltransferase (NNMT) that is known to be up-regulated in ccRCC. Signal transducer and activator of transcription 3 (STAT3), interleukin 6 (IL-6), hepatocyte nuclear factor 1 beta (HNF-1ß) and transforming growth factor beta 1 (TGF-ß1) expression levels were determined in tumor and non tumor samples obtained from 30 patients with ccRCC, using Real-Time PCR. Results obtained showed that TGF-ß1 is significantly (p<0.05) overexpressed in tumor compared with normal tissue samples of ccRCC patients. Conversely, we did not find any statistically significant difference concerning STAT3, IL-6, HNF-1ß gene expression levels. TGF-ß1 up-regulation could be responsible for the high levels of NNMT observed in ccRCC. Targeting TGF-ß1 could improve the outcome of ccRCC patients due to its role in epithelial-mesenchymal transition (EMT), that is known to be associated with a worse overall survival (OS) in this neoplasm.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/diagnóstico , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/diagnóstico , Nicotinamida N-Metiltransferase/genética , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/genética , Feminino , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Rim/patologia , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética
19.
Cell Physiol Biochem ; 41(5): 2016-2026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420001

RESUMO

BACKGROUND: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT) decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH). However, the role of NNMT in nickel-induced histone methylation remains unclear. METHODS: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2) for 72 h or 200 µM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9) mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3) and dickkopf1 (DKK1), were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+) to reduced NAD (NADH) and SAM/SAH ratio were determined. RESULTS: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2), suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1), and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS) not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. CONCLUSIONS: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.


Assuntos
Histonas/metabolismo , Níquel/farmacologia , Nicotinamida N-Metiltransferase/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Linhagem Celular , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , Metilação/efeitos dos fármacos , Nicotinamida N-Metiltransferase/genética
20.
Biochem Biophys Res Commun ; 491(2): 416-422, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-28720493

RESUMO

Nicotinamide N-methyltransferase (NNMT) is a S-adenosyl-l-methionine (SAM)-dependent enzyme that catalyzes N-methylation of nicotinamide (NA) and other pyridines to form N-methyl pyridinium ions. Here we report the first ternary complex X-ray crystal structures of monkey NNMT and mouse NNMT in bound form with the primary endogenous product, 1-methyl nicotinamide (MNA) and demethylated cofactor, S-adenosyl-homocysteine (SAH) determined at 2.30 Å and 1.88 Å respectively. The structural fold of these enzymes is identical to human NNMT. It is known that the primary endogenous product catalyzed by NNMT, MNA is a specific inhibitor of NNMT. Our data clearly indicates that the MNA binds to the active site and it would be trapped in the active site due to the formation of the bridge between the pole (long helix, α3) and long C-terminal loop. This might explain the mechanism of MNA acting as a feedback inhibitor of NNMT.


Assuntos
Retroalimentação Fisiológica , Niacinamida/análogos & derivados , Nicotinamida N-Metiltransferase/química , S-Adenosilmetionina/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Macaca mulatta , Camundongos , Modelos Moleculares , Niacinamida/química , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA