Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401273, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958069

RESUMO

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

2.
BMC Microbiol ; 24(1): 21, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216871

RESUMO

BACKGROUND: As antibiotics and chemotherapeutics are no longer as efficient as they once were, multidrug resistant (MDR) pathogens and cancer are presently considered as two of the most dangerous threats to human life. In this study, Selenium nanoparticles (SeNPs) biosynthesized by Streptomyces parvulus MAR4, nano-chitosan (NCh), and their nanoconjugate (Se/Ch-nanoconjugate) were suggested to be efficacious antimicrobial and anticancer agents. RESULTS: SeNPs biosynthesized by Streptomyces parvulus MAR4 and NCh were successfully achieved and conjugated. The biosynthesized SeNPs were spherical with a mean diameter of 94.2 nm and high stability. Yet, Se/Ch-nanoconjugate was semispherical with a 74.9 nm mean diameter and much higher stability. The SeNPs, NCh, and Se/Ch-nanoconjugate showed significant antimicrobial activity against various microbial pathogens with strong inhibitory effect on their tested metabolic key enzymes [phosphoglucose isomerase (PGI), pyruvate dehydrogenase (PDH), glucose-6-phosphate dehydrogenase (G6PDH) and nitrate reductase (NR)]; Se/Ch-nanoconjugate was the most powerful agent. Furthermore, SeNPs revealed strong cytotoxicity against HepG2 (IC50 = 13.04 µg/ml) and moderate toxicity against Caki-1 (HTB-46) tumor cell lines (IC50 = 21.35 µg/ml) but low cytotoxicity against WI-38 normal cell line (IC50 = 85.69 µg/ml). Nevertheless, Se/Ch-nanoconjugate displayed substantial cytotoxicity against HepG2 and Caki-1 (HTB-46) with IC50 values of 11.82 and 7.83 µg/ml, respectively. Consequently, Se/Ch-nanoconjugate may be more easily absorbed by both tumor cell lines. However, it exhibited very low cytotoxicity on WI-38 with IC50 of 153.3 µg/ml. Therefore, Se/Ch-nanoconjugate presented the most anticancer activity. CONCLUSION: The biosynthesized SeNPs and Se/Ch-nanoconjugate are convincingly recommended to be used in biomedical applications as versatile and potent antimicrobial and anticancer agents ensuring notable levels of biosafety, environmental compatibility, and efficacy.


Assuntos
Anti-Infecciosos , Antineoplásicos , Quitosana , Nanopartículas , Salicilatos , Selênio , Streptomyces , Humanos , Selênio/metabolismo , Selênio/toxicidade , Nanoconjugados , Quitosana/farmacologia , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
3.
J Nanobiotechnology ; 21(1): 285, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605256

RESUMO

BACKGROUND: In the present study, we aimed to develop a novel isotretinoin delivery model for treating skin diseases, revealing its potential advantages in drug delivery and targeted therapy. Using a self-assembly strategy, we grafted a dendrimer, based on a well-defined branched structure for nanomedical devices, with a well-defined nanoarchitecture, yielding spherical, highly homogeneous molecules with multiple surface functionalities. Accordingly, a self-assembled dendrimer-conjugated system was developed to achieve the transdermal delivery of isotretinoin (13cRA-D). RESULTS: Herein, 13cRA-D showed remarkable controlled release, characterized by slow release in normal tissues but accelerated release in tissues with low pH, such as sites of inflammation. These release characteristics could abrogate the nonteratogenic side effects of isotretinoin and allow efficient skin permeation. Moreover, 13cRA-D exhibited high therapeutic efficacy in acne models. Based on in vitro and in vivo experimental results, 13cRA-D afforded better skin penetration than isotretinoin and allowed lesion targeting. Additionally, 13cRA-D induced minimal skin irritation. CONCLUSION: Our findings suggest that 13cRA-D is a safe and effective isotretinoin formulation for treating patients with skin disorders.


Assuntos
Acne Vulgar , Dendrímeros , Humanos , Isotretinoína , Pele , Acne Vulgar/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Inflamação
4.
J Environ Manage ; 329: 117054, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549054

RESUMO

Reducing antibiotic pollution in the environment in essential to preserve the effectiveness of the available antibiotics. In the present study, ß-lactamase from Bacillus tropicus EMB20 was immobilized onto magnetic nanoparticles (Fe3O4) through covalent coupling method. The nanoconjugate was structurally characterized using SEM, FTIR, UV-spectrometry, and XRD diffraction analyses. The prepared enzyme nanoconjugate was thereafter used for remediation of meropenem (Mer) and showed complete removal of 10 mgL-1 Mer within 3 h of treatment. Moreover, the immobilized enzyme was successfully recovered and reused for up to 5 cycles with 57% removal efficiency. The immobilized preparation was also observed to be effective in the removal of higher Mer concentrations of 25 and 50 mgL-1 with 79% and 75% removal efficiency, respectively. The major hydrolyzed product of Mer was found to be opened-lactam ring structure with m/z 402.16. The hydrolyzed product(s) were observed to be non-toxic as revealed through microbial MTT, confocal microscopy, and growth studies. Under the mixed conditions of 50 mgL-1 ampicillin (Amp), 10 mgL-1 amoxicillin (Amox) and, Mer, the nanoconjugate showed simultaneous complete removal of Amp and Mer, while 49% Amox removal was detected after 3 h of treatment. Moreover, the nanoconjugates also showed concomitant complete removal of antibiotic mixture with in 2 h from aquaculture wastewater. Overall, the study comes out with an efficient approach for remediation of ß-lactam antibiotics from contaminated systems.


Assuntos
Nanopartículas de Magnetita , Meropeném , Purificação da Água , beta-Lactamases , Amoxicilina , Antibacterianos/isolamento & purificação , beta-Lactamases/química , Enzimas Imobilizadas/química , Nanopartículas de Magnetita/química , Meropeném/isolamento & purificação , Nanoconjugados , Biodegradação Ambiental , Purificação da Água/métodos , Poluição Química da Água
5.
Saudi Pharm J ; 31(5): 736-745, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181143

RESUMO

The current study was designed to develop a nanoconjugate of cordycepin-melittin (COR-MEL) and assess its healing property in wounded diabetic rats. The prepared nanoconjugate has a particle size of 253.5 ± 17.4 nm with a polydispersity index (PDI) of 0.35 ± 0.04 and zeta potential of 17.2 ± 0.3 mV. To establish the wound healing property of the COR-MEL nanoconjugate, animal studies were pursued, where the animals with diabetes were exposed to excision and treated with COR hydrogel, MEL hydrogel, or COR-MEL nanoconjugate topically. The study demonstrated an accelerated wound contraction in COR-MEL nanoconjugate -treated diabetic rats, which was further validated by histological analysis. The nanoconjugate further exhibited antioxidant activities by inhibiting the accumulation of malondialdehyde (MDA) and exhaustion of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic activities. The nanoconjugate further demonstrated an enhanced anti-inflammatory activity by retarding the expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Additionally, the nanoconjugate exhibits a strong expression of transforming growth factor (TGF)-ß1, vascular endothelial growth factor (VEGF)-A, and platelet-derived growth factor (PDGFR)-ß, indicating enrichment of proliferation. Likewise, nanoconjugate increased the concentration of hydroxyproline as well as the mRNA expression of collagen, type I, alpha 1 (Col 1A1). Thus, it is concluded that the nanoconjugate possesses a potent wound-healing activity in diabetic rats via antioxidant, anti-inflammatory, and pro-angiogenetic mechanisms.

6.
Biomed Microdevices ; 25(1): 1, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449135

RESUMO

The construction of highly sensitive and specific immunosensing nanolabels have attracted tremendous attention in the development of reliable point-of-care disease diagnostics. However, there are still challenges with traditional immunoassays, such as complicated and time-consuming procedure, the use of enzyme label, non-specificity, and require readers for detection. Therefore, we have designed and developed site-directed antibody-immobilized calix[4]arene-gold nanoconjugate based colorimetric immunosensing nanolabel to offer high sensitivity. The prepared nanolabel enabled oriented binding of the antibodies by providing full accessibility of Fab domain for antigen binding. The improved sensitivity of the developed nanolabel was evaluated using vertical flow immunoassay (VFIA) for detecting C-reactive protein (CRP) with a lower detection limit up to 1 ng/ml. Our developed nanolabel was found to be highly specific, easy, quick, and appropriate for onsite detection. The nanolabel is validated with spiked blood samples which exhibited ~90% recovery having a relative error of ~2%. Furthermore, the nanolabel was also used for screening of human blood real samples which showed relative error of ~0.6%. The developed nanolabel can be utilized as a potential nanolabel for the quantitative detection of various biomolecules in clinical samples.


Assuntos
Ouro , Nanoconjugados , Humanos , Colorimetria , Anticorpos
7.
Nano Lett ; 20(6): 4693-4699, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32379455

RESUMO

The lymphatic system provides a major route for the dissemination of many diseases such as tumor metastasis and virus infection. At present, treating these diseases remains a knotty task due to the difficulty of delivering sufficient drugs into lymphatics. After subcutaneous (SC) injection, the transferring of drugs to lymphatic vessels is significantly attenuated by physiological barriers in the interstitial space. Moreover, SC injection represents a highly challenging administration route for biological drugs, as it increases the risk of undesirable immune responses. Here, we demonstrate a simple and effective strategy to address this dilemma by conjugating protein therapeutics with zwitterionic poly(carboxy betaine) (PCB) polymers. PCB conjugation to l-asparaginase (ASP), a highly immunogenic enzyme drug, manifests to significantly promote the diffusion of ASP into the lymphatic system while mitigating its immunogenicity. This platform will facilitate the development of new therapies against diverse lymph-related diseases by enabling safe and efficient lymphatic drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Vasos Linfáticos , Nanoconjugados , Preparações Farmacêuticas , Sistema Linfático
8.
AAPS PharmSciTech ; 22(7): 229, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34467444

RESUMO

Ciprofloxacin (CPX) is prone to spontaneous self-aggregation and formation of supramolecular dimers (π - π stacking) due to its complicated surface chemistry which has been associated with its anomalous solubility and instability in aqueous systems particularly near neutral pH. The surface characteristic of ciprofloxacin was modified through non-intuitive counterion interaction between CPX and diethylaminoethyl dextran (DDEX) to form nanoconjugate assembly. The CPX-DDEX nanoconjugate was confirmed by FTIR, SEM, DSC, TGA, and 1H-NMR. The DSC thermograms showed a remarkable 20% reduction in the melting temperature (Tm) of CPX from 268.57±1.11°C to 214.36±1.0211°C and 78% reduction in enthalpy of fusion (ΔHf) from 59.84 kJ/mol (180.59 J/g) to 12.90 kJ/mol (38.92 J/g), indicating increased solubility and dissolution efficiency. DDEX polymer alone exhibited pseudoplastic characteristics however with more viscous rather than elastic response, while the CPX-DDEX nanoconjugate suspensions exhibited remarkable elastic behavior with significantly increased storage modulus (G') thus controlling and extending the release of CPX. The reconstituted freeze-dried CPX-DDEX nanoconjugate suspension was chemically stable throughout the 90-day study both in the refrigerator and at controlled room temperature, while the aqueous suspension of pure CPX without DDEX was only stable for 72 and 24 h, respectively. The dissolution efficiency of the CPX-DDEX nanoconjugate suspensions increased with increasing molar concentration of DDEX to a maximum of 100% at 50 µM of DDEX followed by a remarkable decrease within the 3-week study. It was apparent that the dissolution efficiency was governed by a critical balance between the CPX solubility and the viscoelastic characteristics of the polymeric nanoassembly. This study demonstrates the potential application of polymer-drug nanoconjugation formulation design to stabilization and flexible delivery of CPX from aqueous suspension systems. Graphical abstract.


Assuntos
Ciprofloxacina , Nanoconjugados , Portadores de Fármacos , Ibuprofeno , Polímeros , Suspensões
9.
Proc Natl Acad Sci U S A ; 113(32): E4601-9, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457945

RESUMO

Malignant osteolysis associated with inoperable primary bone tumors and multifocal skeletal metastases remains a challenging clinical problem in cancer patients. Nanomedicine that is able to target and deliver therapeutic agents to diseased bone sites could potentially provide an effective treatment option for different types of skeletal cancers. Here, we report the development of polylactide nanoparticles (NPs) loaded with doxorubicin (Doxo) and coated with bone-seeking pamidronate (Pam) for the targeted treatment of malignant skeletal tumors. In vivo biodistribution of radiolabeled targeted Pam-NPs demonstrated enhanced bone tumor accumulation and prolonged retention compared with nontargeted NPs. In a murine model of focal malignant osteolysis, Pam-functionalized, Doxo-loaded NPs (Pam-Doxo-NPs) significantly attenuated localized osteosarcoma (OS) progression compared with nontargeted Doxo-NPs. Importantly, we report on the first evaluation to our knowlege of Pam-Doxo-NPs in dogs with OS, which possess tumors of anatomic size and physiology comparable to those in humans. The repeat dosing of Pam-Doxo-NPs in dogs with naturally occurring OS indicated the therapeutic was well tolerated without hematologic, nonhematologic, and cardiac toxicities. By nuclear scintigraphy, the biodistribution of Pam-Doxo-NPs demonstrated malignant bone-targeting capability and exerted measurable anticancer activities as confirmed with percent tumor necrosis histopathology assessment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Difosfonatos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanoconjugados/administração & dosagem , Osteólise/tratamento farmacológico , Animais , Difosfonatos/farmacocinética , Doxorrubicina/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pamidronato
10.
J Nanobiotechnology ; 15(1): 26, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376812

RESUMO

BACKGROUND: Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS: The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS: Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS: Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.


Assuntos
Formação de Anticorpos , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Nanotubos de Carbono/química , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Proliferação de Células , Citocinas/imunologia , Dengue/imunologia , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/imunologia , Feminino , Imunidade Celular , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoconjugados/química , Nanomedicina , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Análise Espectral Raman , Baço/citologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
11.
Nanomedicine ; 13(2): 631-639, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27520726

RESUMO

HER2+ breast cancer is one of the most aggressive forms of breast cancer. The new polymalic acid-based mini nanodrug copolymers are synthesized and specifically characterized to inhibit growth of HER2+ breast cancer. These mini nanodrugs are highly effective and in the clinic may substitute for trastuzumab (the marketed therapeutic antibody) and antibody-targeted nanobioconjugates. Novel mini nanodrugs are designed to have slender shape and small size. HER2+ cells were recognized by the polymer-attached trastuzumab-mimetic 12-mer peptide. Synthesis of the nascent cell-transmembrane HER2/neu receptors by HER2+ cells was inhibited by antisense oligonucleotides that prevented cancer cell proliferation and significantly reduced tumor size by more than 15 times vs. untreated control or PBS-treated group. We emphasize that the shape and size of mini nanodrugs can enhance penetration of multiple bio-barriers to facilitate highly effective treatment. Replacement of trastuzumab by the mimetic peptide favors reduced production costs and technical efforts, and a negligible immune response.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2 , Trastuzumab/farmacocinética , Anticorpos Monoclonais Humanizados/administração & dosagem , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Peptídeos/uso terapêutico , Trastuzumab/administração & dosagem
12.
Mol Pharm ; 12(4): 1279-88, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25751281

RESUMO

In this study, we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) based nanoconjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells than that with the free drug. After synthesis, the highly efficient uptake process and intracellular dynamics of this nanoconjugate were monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nanovector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing positive feedback to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to the excellent internalization and endolysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than that of free drug molecules. Hence, the synthesized nanoconjugate and temozolomide could act in synergy to deliver a more potent and long-term antiproliferative effect against malignant GBM cells.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Azacitidina/análogos & derivados , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Nanoconjugados/química , Antimetabólitos Antineoplásicos/química , Apoptose , Azacitidina/química , Materiais Biocompatíveis/química , Compostos de Boro , Linhagem Celular Tumoral , Metilação de DNA , Dacarbazina/administração & dosagem , Decitabina , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Ácido Láctico/química , Espectroscopia de Ressonância Magnética , Metacrilatos , Metilmetacrilatos , Micelas , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectrometria de Fluorescência , Temozolomida
13.
Heliyon ; 10(3): e25414, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352784

RESUMO

In this study, chitosan nanoparticles (CSNPs) encapsulating Foeniculum vulgare (FV) seed extract (SE) were prepared for the controlled delivery of bioactive phytoconstituents. The prepared CSNPs encapsulating FVSE as sustain-releasing nanoconjugate (CSNPs-FVSE) was used as a potent source of functional metabolites including kaempferol and quercetin for accelerated reclamation of sensory and motor functions following peripheral nerve injury (PNI). The nanoconjugate exhibited in vitro a biphasic diffusion-controlled sustained release of quercetin and kaempferol ensuring prolonged therapeutic effects. The CSNPs-FVSE was administered through gavaging to albino mice daily at a dose rate of 25 mg/kg body weight from the day of induced PNI till the end of the experiment. The conjugate-treatment induced a significant acceleration in the regain of motor functioning, evaluated from the sciatic function index (SFI) and muscle grip strength studies. Further, the hotplate test confirmed a significantly faster recuperation of sensory functions in conjugate-treated group compared to control. An array of underlying biochemical pathways regulates the regeneration under well-optimized glucose and oxidant levels. Therefore, oxidant status (TOS), blood glycemic level and total antioxidant capacity (TAC) were evaluated in the conjugate-treated group and compared with the controls. The treated subjects exhibited controlled oxidative stress and regulated blood sugars compared to the non-treated control. Thus, the nanoconjugate enriched with polyphenolics significantly accelerated the regeneration and recovery of functions after nerve lesions. The biocompatible nanocarriers encapsulating the nontoxic natural bioactive constitutents have great medicinal and economic value.

14.
Nanomedicine (Lond) ; 19(2): 127-143, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38131290

RESUMO

Background: Photodynamic therapy (PDT) of cancer has been limited by the poor solubility of most photosensitizers, use of high drug dosages, and the pH difference between the tumor tissue microenvironment (slightly acidic) and the bloodstream. These affect cellular uptake, selectivity and singlet oxygen generation. Materials & methods: We formulated Photinia glabra-green synthesized zinc oxide-protoporphyrin IX (PG-ZnO-PP) nanoconjugates by conjugating the ZnO nanoparticles enriched with amino groups and PP. Results: PG-ZnO-PP nanoconjugates showed higher rate of reactive oxygen species generation, improved cellular uptake in the acidic pH and lower IC50 toward Eca-109 cells for PDT. Conclusion: PG-ZnO-PP nanoconjugates are a potential solution to reducing drug dosage of PP through improved drug uptake, for enhanced targetability and reduced skin photosensitivity with improved PDT efficacy.


The progress of treating cancer using light-sensitive drugs and laser light of known wavelength has been limited by the poor solubility of most light-sensitive drugs, the use of high drug dosages and the slightly acidic environment within the cancerous tissues compared with normal blood in the body. These affect the ability of drugs to accumulate in cancerous cells, and not the normal cells, and the ability to produce the oxygen species that are toxic to the cancerous cells. In this paper, we prepared nanoparticles from zinc acetate using Photinia glabra (PG) fruit extract which were then used to chemically react with a light-sensitive drug called protoporphyrin IX (PP) to formulate small particles known as PG­zinc oxide (ZnO)­PP nanoconjugates. Our results showed that PG­ZnO­PP nanoconjugates had the ability to produce the toxic oxygen particles at a high rate and in good quantity. They also had a higher capability to accumulate in the cancerous cells at a pH below 7 with lower values of the drug needed to cause 50% of cell death toward the cancerous cells which affect the tube that connects from the throat to the stomach when projected with laser light. We could consider PG­ZnO­PP nanoconjugates to serve as a potential solution for reducing the dosage of PP needed to treat cancer in the presence of laser light, and at the same time they can help to reduce the skin-related side effects for patients after treatment when exposed to light.


Assuntos
Neoplasias , Photinia , Fotoquimioterapia , Protoporfirinas , Óxido de Zinco , Nanoconjugados , Óxidos , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico
15.
J Colloid Interface Sci ; 662: 857-869, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382370

RESUMO

Copper-based nanomaterials show considerable potential in the chemodynamic therapy of cancers. However, their clinical application is restricted by low catalytic activity in tumor microenvironment and copper-induced tumor angiogenesis. Herein, a novel copper-doxorubicin-anlotinib (CDA) nanoconjugate was constructed by the combination of copper-hydrazide coordination, hydrazone linkage and Schiff base bond. The CDA nanoconjugate consists of a copper-3,3'-dithiobis(propionohydrazide)-doxorubicin core and an anlotinib-hyaluronan shell. Benefiting from hyaluronan camouflage and abundant disulfide bonds and Cu2+, the CDA nanoconjugate possessed excellent tumor-targeting and glutathione-depleting abilities and enhanced chemodynamic efficacy. Released doxorubicin significantly improved copper-mediated chemodynamic therapy by upregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression to increase intracellular H2O2 level. Furthermore, the nanoconjugate produced excessive •OH to induce lipid peroxidation and mitochondrial dysfunction, thus greatly elevating doxorubicin-mediated chemotherapy. Importantly, anlotinib effectively inhibited the angiogenic potential of copper ions. In a word, the CDA nanoconjugate is successfully constructed by combined coordination and pH-responsive linkages, and displays the great potential of copper-drug conjugate for targeted synergistic chemo/chemodynamic/antiangiogenic triple therapy against cancers.


Assuntos
Carcinoma Hepatocelular , Indóis , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Cobre , Ácido Hialurônico , Nanoconjugados , Peróxido de Hidrogênio , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/farmacologia , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Nat Prod Res ; 37(18): 3184-3190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36412534

RESUMO

The development of resistance, instability and high doses are some drawbacks of biologically active natural products. Modification of natural compounds to make it broad spectrum is the standard approach in drug design. This paper sets to modify the naringenin by silver nanoparticle conjugation to enhance its already reported pharmacological activities. The naringenin-nano silver conjugate was synthesized by one-step green synthesis, that is, sunlight exposure confirmed by UV spectroscopy. The biosynthesized naringenin-nanosilver conjugate was tested for antiacanthamoebal and antimicrobial potential. The antibacterial potential was increased by 5.8-6.14 fold against Gram positive bacteria, that is, S. aureus and Bacillus subtilis and 4.5-13.6 fold against Gram negative bacteria, that is, Escherichia coli and Pseudomonas aeruginosa. The standard naringenin-nanosilver conjugate significantly reduced the LC50 values against the Acanthamoeba cells, by, 66% and 36%, as compared to substrate naringin and standard naringenin respectively while biotransformed naringinin-nanosilver conjugate reduced LC50 by 50.56%, compared with biotransformed naringenin. Hence modification of natural product as nanoconjugate is the best practice for improvement as an effective drug.

17.
Turk J Chem ; 47(5): 1085-1102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173750

RESUMO

This study presents the synthesis of some metal {M = Zn(II), Lu(III), Si(IV)} phthalocyanines bearing chlorine and 2-(4-methylthiazol-5-yl) ethoxy groups at peripheral or axial positions. The newly synthesized metal phthalocyanines were characterized by applying FT-IR, 1H NMR, mass, and UV-Vis spectroscopic approaches. Additionally, the surface of gold nanoparticles was modified with zinc(II) and silicon(IV) phthalocyanines. The resultant nanoconjugates were characterized using TEM images. Moreover, the effect of metal ions and position of substituent, and gold nanoparticles on the photochemical and sonophotochemical properties of the studied phthalocyanines was investigated. The highest singlet oxygen quantum yield was obtained for the lutetium phthalocyanine by applying photochemical and sonophotochemical methods. However, the linkage of the zinc(II) and silicon(IV) phthalocyanines to the surface of gold nanoparticles improved significantly their singlet oxygen generation capacities.

18.
Front Immunol ; 14: 1155377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033926

RESUMO

Background: Understanding the negative impact of the tumor microenvironment on the creation of an effective immune response has contributed to the development of new therapeutic anti-cancer strategies. One such solution is combined therapy consisting of chemotherapeutic administration followed by dendritic cell (DC)-based vaccines. The use of cytostatic leads to the elimination of cancer cells, but can also modulate the tumor milieu. Moreover, great efforts are being made to increase the therapeutic outcome of immunotherapy, e.g. by enhancing the ability of DCs to generate an efficient immune response, even in the presence of immunosuppressive cytokines such as IL-10. The study aimed to determine the effectiveness of combined therapy with chemotherapeutic with immunomodulatory potential - HES-MTX nanoconjugate (composed of methotrexate (MTX) and hydroxyethyl starch (HES)) and DCs with downregulated expression of IL-10 receptor stimulated with tumor antigens (DC/shIL-10R/TAg) applied in MC38 murine colon carcinoma model. Methods: With the use of lentiviral vectors the DCs with decreased expression of IL-10R were obtained and characterized. During in vivo studies MC38-tumor bearing mice received MTX or HES-MTX nanoconjugate as a sole treatment or combined with DC-based immunotherapy containing unmodified DCs or DCs transduced with shRNA against IL-10R (or control shRNA sequence). Tumor volume was monitored during the experiment. One week after the last injection of DC-based vaccines, tumor nodules and spleens were dissected for ex vivo analysis. The changes in the local and systemic anti-tumor immune response were estimated with the use of flow cytometry and ELISA methods. Results and conclusions: In vitro studies showed that the downregulation of IL-10R expression in DCs enhances their ability to activate the specific anti-tumor immune response. The use of HES-MTX nanoconjugate and DC/shIL-10R/TAg in the therapy of MC38-tumor bearing mice resulted in the greatest tumor growth inhibition. At the local anti-tumor immune response level a decrease in the infiltration of cells with suppressor activity and an increase in the influx of effector cells into MC38 tumor tissue was observed. These changes were crucial to enhance the effective specific immune response at the systemic level, which was revealed in the greatest cytotoxic activity of spleen cells against MC38 cells.


Assuntos
Vacinas Anticâncer , Carcinoma , Neoplasias do Colo , Animais , Camundongos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Nanoconjugados/uso terapêutico , Microambiente Tumoral , RNA Interferente Pequeno/genética , Ativação Linfocitária , Células Dendríticas , Receptores de Interleucina-10/metabolismo , Carcinoma/tratamento farmacológico
19.
Am J Cancer Res ; 13(10): 4623-4643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970366

RESUMO

Methotrexate (MTX) which is one of the longest-used cytostatics, belongs to the group of antimetabolites and is used for treatment in different types of cancer as well as during autoimmune diseases. MTX can act as a modulator enable to create the optimal environment to generate the specific anti-tumor immune response. A novel system for MTX delivery is its conjugation with high-molecular-weight carriers such as hydroxyethyl starch (HES), a modified amylopectin-based polymer applied in medicine as a colloidal plasma volume expander. Such modification prolongs the plasma half-life of the HES-MTX nanoconjugate and improves the distribution of the drug in the body. In the current study, we focused on evaluating the dose-dependent therapeutic efficacy of chemotherapy with HES-MTX nanoconjugate compared to the free form of MTX, and examining the time-dependent changes in the local and systemic anti-tumor immune response induced by this therapy. To confirm the higher effectiveness of HES-MTX in comparison to MTX, we analyzed its action using murine MC38 colon carcinoma and B16 F0 melanoma tumor models. It was noted that HES-MTX at a dose of 20 mg/kg b.w. was more effective in tumor growth inhibition than MTX in both tumor models. One of the main differences between the two analyzed tumor models concerned the kinetics of the appearance of the immunomodulation. In MC38 tumors, the beneficial change in the tumor microenvironment (TME) landscape, manifested by the depletion of pro-tumor immune cells, and increased influx of cells with strong anti-tumor activity was noted already 3 days after HES-MTX administration, while in B16 F0 model, these changes occurred 10 days after the start of therapy. Thus, the immunomodulatory potential of the HES-MTX nanoconjugate may be closely related to the specific immune cell composition of the TME, which combined with additional treatment such as immunotherapies, would enhance the therapeutic potential of the nanoconjugate.

20.
Front Immunol ; 14: 1212606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545526

RESUMO

Background: The tumor microenvironment (TME) provides a conducive environment for the growth and survival of tumors. Negative factors present in TME, such as IL-10, may limit the effectiveness of cellular vaccines based on dendritic cells, therefore, it is important to control its effect. The influence of IL-10 on immune cells can be abolished e.g., by using antibodies against the receptor for this cytokine - anti-IL-10R. Furthermore, the anticancer activity of cellular vaccines can be enhanced by modifying them to produce proinflammatory cytokines, such as IL-12, IL-15 or IL-18. Additionally, an immunomodulatory dose of methotrexate and hydroxyethyl starch (HES-MTX) nanoconjugate may stimulate effector immune cells and eliminate regulatory T cells, which should enhance the antitumor action of immunotherapy based on DC vaccines. The main aim of our study was to determine whether the HES-MTX administered before immunotherapy with anti-IL-10R antibodies would change the effect of vaccines based on dendritic cells overproducing IL-12, IL-15, or IL-18. Methods: The activity of modified DCs was checked in two therapeutic protocols - immunotherapy with the addition of anti-IL10R antibodies and chemoimmunotherapy with HES-MTX and anti-IL10R antibodies. The inhibition of tumor growth and the effectiveness of the therapy in inducing a specific antitumor response were determined by analyzing lymphoid and myeloid cell populations in tumor nodules, and the activity of restimulated splenocytes. Results and conclusions: Using the HES-MTX nanoconjugate before immunotherapy based on multiple administrations of anti-IL-10R antibodies and cellular vaccines capable of overproducing proinflammatory cytokines IL-12, IL-15 or IL-18 created optimal conditions for the effective action of these vaccines in murine colon carcinoma MC38 model. The applied chemoimmunotherapy caused the highest inhibition of tumor growth in the group receiving DC/IL-15/IL-15Rα/TAg + DC/IL-18/TAg at the level of 72.4%. The use of cellular vaccines resulted in cytotoxic activity increase in both immuno- or chemoimmunotherapy. However, the greatest potential was observed both in tumor tissue and splenocytes obtained from mice receiving two- or three-component vaccines in the course of combined application. Thus, the designed treatment schedule may be promising in anticancer therapy.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo , Citocinas , Animais , Camundongos , Células Dendríticas , Imunoterapia/métodos , Interleucina-10 , Interleucina-12 , Interleucina-15 , Interleucina-18 , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Nanoconjugados/uso terapêutico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA