Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(6): 2214-2226, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408731

RESUMO

Modulation of cognitive functions supporting human declarative memory is one of the grand challenges of neuroscience, and of vast importance for a variety of neuropsychiatric, neurodegenerative and neurodevelopmental diseases. Despite a recent surge of successful attempts at improving performance in a range of memory tasks, the optimal approaches and parameters for memory enhancement have yet to be determined. On a more fundamental level, it remains elusive as to how delivering electrical current in a given brain area leads to enhanced memory processing. Starting from the local and distal physiological effects on neural populations, the mechanisms of enhanced memory encoding, maintenance, consolidation or recall in response to direct electrical stimulation are only now being unravelled. With the advent of innovative neurotechnologies for concurrent recording and stimulation intracranially in the human brain, it becomes possible to study both acute and chronic effects of stimulation on memory performance and the underlying neural activities. In this review, we summarize the effects of various invasive stimulation approaches for modulating memory functions. We first outline the challenges that were faced in the initial studies of memory enhancement and the lessons learnt. Electrophysiological biomarkers are then reviewed as more objective measures of the stimulation effects than behavioural outcomes. Finally, we classify the various stimulation approaches into continuous and phasic modulation with an open or closed loop for responsive stimulation based on analysis of the recorded neural activities. Although the potential advantage of closed-loop responsive stimulation over the classic open-loop approaches is inconclusive, we foresee the emerging results from ongoing longitudinal studies and clinical trials will shed light on both the mechanisms and optimal strategies for improving declarative memory. Adaptive stimulation based on the biomarker analysis over extended periods of time is proposed as a future direction for obtaining lasting effects on memory functions. Chronic tracking and modulation of neural activities intracranially through adaptive stimulation opens tantalizing new avenues to continually monitor and treat memory and cognitive deficits in a range of brain disorders. Brain co-processors created with machine-learning tools and wireless bi-directional connectivity to seamlessly integrate implanted devices with smartphones and cloud computing are poised to enable real-time automated analysis of large data volumes and adaptively tune electrical stimulation based on electrophysiological biomarkers of behavioural states. Next-generation implantable devices for high-density recording and stimulation of electrophysiological activities, and technologies for distributed brain-computer interfaces are presented as selected future perspectives for modulating human memory and associated mental processes.


Assuntos
Encéfalo , Memória , Humanos , Encéfalo/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Estimulação Elétrica , Cognição
2.
Glia ; 71(5): 1259-1277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36645018

RESUMO

Neuronal rhythmogenesis in the spinal cord is correlated with variations in extracellular K+ levels ([K+ ]e ). Astrocytes play important role in [K+ ]e homeostasis and compute neuronal information. Yet it is unclear how neuronal oscillations are regulated by astrocytic K+ homeostasis. Here we identify the astrocytic inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) as a key molecular player for neuronal rhythmicity in the spinal central pattern generator (CPG). By combining two-photon calcium imaging with electrophysiology, immunohistochemistry and genetic tools, we report that astrocytes display Ca2+ transients before and during oscillations of neighboring neurons. Inhibition of astrocytic Ca2+ transients with BAPTA decreases the barium-sensitive Kir4.1 current responsible of K+ clearance. Finally, we show in mice that Kir4.1 knockdown in astrocytes progressively prevents neuronal oscillations and alters the locomotor pattern resulting in lower motor performances in challenging tasks. These data identify astroglial Kir4.1 channels as key regulators of neuronal rhythmogenesis in the CPG driving locomotion.


Assuntos
Astrócitos , Neurônios , Camundongos , Animais , Astrócitos/fisiologia , Medula Espinal , Imuno-Histoquímica , Periodicidade
3.
Biol Cybern ; 117(1-2): 61-79, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622415

RESUMO

The Hodgkin-Huxley (HH) model and squid axon (bathed in reduced Ca2+) fire repetitively for steady current injection. Moreover, for a current-range just suprathreshold, repetitive firing coexists with a stable steady state. Neuronal excitability, as such, shows bistability and hysteresis providing the opportunity for the system to perform as switchable between firing and non-firing states with transient input and providing the backbone as a dynamical mechanism for bursting oscillations. Some conditions for bistability can be derived by intricate analysis (bifurcation theory) and characterized by simulation, but conditions for emergence and robustness of such bistability do not typically follow from intuition. Here, we demonstrate with a semi-quantitative two-variable, V-w, reduction of the HH model features that promote/reduce bistability. Visualization of flow and trajectories in the V-w phase plane provides an intuitive grasp for bistability. The geometry of action potential recovery involves a late phase during which the dynamic negative feedback of [Formula: see text] inactivation and [Formula: see text] activation over/undershoot, respectively, their resting values, thereby leading to hyperexcitabilty and an intrinsically generated opportunity to by-pass the spiral-like stable rest state and initiate the next spike upstroke. We illustrate control of bistability and dependence of the degree of hysteresis on recovery timescales and gating properties. Our dynamical dissection reveals the strongly attracting depolarized phase of the spike, enabling approximations like the resetting feature of adapting integrate-and-fire models. We extend our insights and show that the Morris-Lecar model can also exhibit robust bistability.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador
4.
Cereb Cortex ; 32(12): 2657-2667, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35708067

RESUMO

Development and maturation in cortical networks depend on neuronal activity. For stabilization and pruning of connections, synchronized oscillations play a crucial role. A fundamental mechanism that enables coordinated activity during brain functioning is formed of synchronized neuronal oscillations in low- (delta and theta) and high- (gamma) frequency bands. The relationship between neural synchrony, cognition, and the perceptual process has been widely studied, but any possible role of neural synchrony in amblyopia has been less explored. We hypothesized that monocular deprivation (MD) during early postnatal life would lead to changes in neuronal activity that would be demonstrated by changes in phase-amplitude coupling (PAC) and altered power in specific oscillatory frequency. Our results demonstrate that functional connectivity in the visual cortex is altered by MD during adolescence. The amplitude of high-frequency oscillations is modulated by the phase of low-frequency oscillations. Demonstration of enhanced delta-gamma and theta-gamma PAC indicates that our results are relevant for a broad range of nested oscillatory markers. These markers are inherent to neuronal processing and are consistent with the hypothesized increase in the intrinsic coupling that arises from neural oscillatory phase alignment. Our results reveal distinct frequency bands exhibit altered power and coherence variations modulated by experience-driven plasticity.


Assuntos
Córtex Visual , Animais , Cognição , Camundongos , Neurônios/fisiologia , Córtex Visual/fisiologia
5.
J Neurosci ; 41(31): 6684-6698, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34230106

RESUMO

Over the past decades, numerous studies have linked cortical gamma oscillations (∼30-100 Hz) to neurocomputational mechanisms. Their functional relevance, however, is still passionately debated. Here, we asked whether endogenous gamma oscillations in the human brain can be entrained by a rhythmic photic drive >50 Hz. Such a noninvasive modulation of endogenous brain rhythms would allow conclusions about their causal involvement in neurocognition. To this end, we systematically investigated oscillatory responses to a rapid sinusoidal flicker in the absence and presence of endogenous gamma oscillations using magnetoencephalography (MEG) in combination with a high-frequency projector. The photic drive produced a robust response over visual cortex to stimulation frequencies of up to 80 Hz. Strong, endogenous gamma oscillations were induced using moving grating stimuli as repeatedly done in previous research. When superimposing the flicker and the gratings, there was no evidence for phase or frequency entrainment of the endogenous gamma oscillations by the photic drive. Unexpectedly, we did not observe an amplification of the flicker response around participants' individual gamma frequencies (IGFs); rather, the magnitude of the response decreased monotonically with increasing frequency. Source reconstruction suggests that the flicker response and the gamma oscillations were produced by separate, coexistent generators in visual cortex. The presented findings challenge the notion that cortical gamma oscillations can be entrained by rhythmic visual stimulation. Instead, the mechanism generating endogenous gamma oscillations seems to be resilient to external perturbation.SIGNIFICANCE STATEMENT We aimed to investigate to what extent ongoing, high-frequency oscillations in the gamma-band (30-100 Hz) in the human brain can be entrained by a visual flicker. Gamma oscillations have long been suggested to coordinate neuronal firing and enable interregional communication. Our results demonstrate that rhythmic visual stimulation cannot hijack the dynamics of ongoing gamma oscillations; rather, the flicker response and the endogenous gamma oscillations coexist in different visual areas. Therefore, while a visual flicker evokes a strong neuronal response even at high frequencies in the gamma-band, it does not entrain endogenous gamma oscillations in visual cortex. This has important implications for interpreting studies investigating the causal and neuroprotective effects of rhythmic sensory stimulation in the gamma-band.


Assuntos
Ritmo Gama/fisiologia , Córtex Visual/fisiologia , Adulto , Relógios Biológicos/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Estimulação Luminosa , Percepção Visual/fisiologia
6.
Neuroimage ; 253: 119093, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288283

RESUMO

Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Encéfalo , Mapeamento Encefálico , Eletrodos , Humanos
7.
Neuroimage ; 264: 119752, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400377

RESUMO

Distinguishing groups of subjects or experimental conditions in a high-dimensional feature space is a common goal in modern neuroimaging studies. Successful classification depends on the selection of relevant features as not every neuronal signal component or parameter is informative about the research question at hand. Here, we developed a novel unsupervised multistage analysis approach that combines dimensionality reduction, bootstrap aggregating and multivariate classification to select relevant neuronal features. We tested the approach by identifying changes of brain-wide electrophysiological coupling in Multiple Sclerosis. Multiple Sclerosis is a demyelinating disease of the central nervous system that can result in cognitive decline and physical disability. However, related changes in large-scale brain interactions remain poorly understood and corresponding non-invasive biomarkers are sparse. We thus compared brain-wide phase- and amplitude-coupling of frequency specific neuronal activity in relapsing-remitting Multiple Sclerosis patients (n = 17) and healthy controls (n = 17) using magnetoencephalography. Changes in this dataset included both, increased and decreased phase- and amplitude-coupling in wide-spread, bilateral neuronal networks across a broad range of frequencies. These changes allowed to successfully classify patients and controls with an accuracy of 84%. Furthermore, classification confidence predicted behavioral scores of disease severity. In sum, our results unravel systematic changes of large-scale phase- and amplitude coupling in Multiple Sclerosis. Furthermore, our results establish a new analysis approach to efficiently contrast high-dimensional neuroimaging data between experimental groups or conditions.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Magnetoencefalografia/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem
8.
Hippocampus ; 32(1): 38-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843143

RESUMO

The hippocampus has been linked to memory encoding and spatial navigation, while the prefrontal cortex is associated with cognitive functions such as decision-making. These regions are hypothesized to communicate in tasks that demand both spatial navigation and decision-making processes. However, the electrophysiological signatures underlying this communication remain to be better elucidated. To investigate the dynamics of the hippocampal-prefrontal interactions, we have analyzed their local field potentials and spiking activity recorded from rats performing a spatial alternation task on a figure eight-shaped maze. We found that the phase coherence of theta peaked around the choice point area of the maze. Moreover, Granger causality revealed a hippocampus → prefrontal cortex directionality of information flow at theta frequency, peaking at starting areas of the maze, and on the reverse direction at delta frequency, peaking near the turn onset. Additionally, the patterns of phase-amplitude cross-frequency coupling within and between the regions also showed spatial selectivity, and hippocampal theta and prefrontal delta modulated not only gamma amplitude but also inter-regional gamma synchrony. Finally, we found that the theta rhythm dynamically modulated neurons in both regions, with the highest modulation at the choice area; interestingly, prefrontal cortex neurons were more strongly modulated by the hippocampal theta rhythm than by their local field rhythm. In all, our results reveal maximum electrophysiological interactions between the hippocampus and the prefrontal cortex near the decision-making period of the spatial alternation task, corroborating the hypothesis that a dynamic interplay between these regions takes place during spatial decisions.


Assuntos
Hipocampo , Ritmo Teta , Animais , Cognição , Hipocampo/fisiologia , Neurônios , Córtex Pré-Frontal/fisiologia , Ratos , Ritmo Teta/fisiologia
9.
Eur J Neurosci ; 55(11-12): 3418-3437, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34363269

RESUMO

Rhythmic stimulation can be applied to modulate neuronal oscillations. Such 'entrainment' is optimized when stimulation frequency is individually calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short electroencephalography (EEG) measurements at rest or during an attention task (cognitive state), using single parieto-occipital electrodes in 24 participants on 4 days (between-sessions), with multiple measurements over an hour on 1 day (within-session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional 'maximum' method and a 'Gaussian fit' method. IAF was reliable within- and between-sessions for both cognitive states and hemispheres, though task-IAF estimates tended to be more variable. Overall, the 'Gaussian fit' method was more reliable than the 'maximum' method. Furthermore, we evaluated how far from an approximated 'true' task-related IAF the selected 'stimulation frequency' was, when calibrating this frequency based on a short rest-EEG, a short task-EEG, or simply selecting 10 Hz for all participants. For the 'maximum' method, rest-EEG calibration was best, followed by task-EEG, and then 10 Hz. For the 'Gaussian fit' method, rest-EEG and task-EEG-based calibration were similarly accurate, and better than 10 Hz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings.


Assuntos
Ritmo alfa , Eletroencefalografia , Algoritmos , Ritmo alfa/fisiologia , Atenção/fisiologia , Eletroencefalografia/métodos , Humanos
10.
Cell Mol Neurobiol ; 42(5): 1341-1353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33392916

RESUMO

Alterations in glycogen synthase kinase-3ß (GSK-3ß) activity have been implicated in disorders of cognitive impairment, including Alzheimer's disease and schizophrenia. Cognitive dysfunction is also characterized by the dysregulation of neuronal oscillatory activity, macroscopic electrical rhythms in brain that are critical to systems communication. A direct functional relationship between GSK-3ß and neuronal oscillations has not been elucidated. Therefore, in the present study, using an adeno-associated viral vector containing a persistently active mutant form of GSK-3ß, GSK-3ß(S9A), the impact of elevated kinase activity in prefrontal cortex (PFC) or ventral hippocampus (vHIP) of rats on neuronal oscillatory activity was evaluated. GSK-3ß(S9A)-induced changes in learning and memory were also assessed and the phosphorylation status of tau protein, a substrate of GSK-3ß, examined. It was demonstrated that increasing GSK-3ß(S9A) activity in either the PFC or vHIP had similar effects on neuronal oscillatory activity, enhancing theta and/or gamma spectral power in one or both regions. Increasing PFC GSK-3ß(S9A) activity additionally suppressed high gamma PFC-vHIP coherence. These changes were accompanied by deficits in recognition memory, spatial learning, and/or reversal learning. Elevated pathogenic tau phosphorylation was also evident in regions where GSK-3ß(S9A) activity was upregulated. The neurophysiological and learning and memory deficits induced by GSK-3ß(S9A) suggest that aberrant GSK-3ß signalling may not only play an early role in cognitive decline in Alzheimer's disease but may also have a more central involvement in disorders of cognitive dysfunction through the regulation of neurophysiological network function.


Assuntos
Doença de Alzheimer , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença de Alzheimer/metabolismo , Animais , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Neurônios/metabolismo , Fosforilação , Ratos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA