Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hazard Mater ; 404(Pt A): 124162, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065456

RESUMO

The adsorption of Cr(VI) on biochars can be suppressed by coexisting anions, but the roles of O-containing functional groups and in particular N-containing functional groups are unclear. In this study, we combined spectroscopic and molecular simulation approaches to investigate the selective adsorption of Cr(VI) on the O-rich (PB, UB1) and N-rich (UB3, UB5) biochars under strong competition of anions. The elemental analysis and pyrolysis-gas chromatography/mass spectrometry indicated that the structures of PB and UB1 were similar, and so were the UB3 and UB5. Quantification of functional groups showed that for UB1, 75.3% of Cr(VI) removal was attributed to O-containing groups, while 53.3-72.7% of that was mediated by N-containing groups in UB3 and UB5. X-ray photoelectron spectra and density functional theory calculations confirmed that for O-rich biochars, surface complexation and strong H-bonds between carboxyl/hydroxyl and HCrO4- improved Cr(VI) removal in the presence of anions, while for N-rich biochars, Cr(VI) adsorption was depressed by coexisting anions in the order of Cl->NO3- >SO42- because of the weaker H-bond between protonated amino groups and HCrO4-. This study presents a novel approach for quantitative, molecular-level evaluation of the roles of biochar functional groups in the Cr(VI) removal from complex environmental systems.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cromo/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA