RESUMO
Protein import into mitochondria is a highly regulated process, yet how cells clear mitochondria undergoing dysfunctional protein import remains poorly characterized. Here we showed that mitochondrial protein import stress (MPIS) triggers localized LC3 lipidation. This arm of the mitophagy pathway occurs through the Nod-like receptor (NLR) protein NLRX1 while, surprisingly, without the engagement of the canonical mitophagy protein PINK1. Mitochondrial depolarization, which itself induces MPIS, also required NLRX1 for LC3 lipidation. While normally targeted to the mitochondrial matrix, cytosol-retained NLRX1 recruited RRBP1, a ribosome-binding transmembrane protein of the endoplasmic reticulum, which relocated to the mitochondrial vicinity during MPIS, and the NLRX1/RRBP1 complex in turn controlled the recruitment and lipidation of LC3. Furthermore, NLRX1 controlled skeletal muscle mitophagy in vivo and regulated endurance capacity during exercise. Thus, localization and lipidation of LC3 at the site of mitophagosome formation is a regulated step of mitophagy controlled by NLRX1/RRBP1 in response to MPIS.
Assuntos
Proteínas Mitocondriais , Mitofagia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte ProteicoRESUMO
In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.
Assuntos
Proteínas de Membrana , Proteínas Mitocondriais , Proteínas de Peixe-Zebra , Animais , Imunidade Inata , Domínios Proteicos , Isoformas de Proteínas/genética , Ubiquitina-Proteína Ligases , Ubiquitinação , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Membrana/metabolismo , Interferons/metabolismoRESUMO
Hypoxia-ischemia (HI) is a major cause of brain damage in neonates. Mitochondrial dysfunction acts as a hub for a broad spectrum of signaling events, culminating in cell death triggered by HI. A neuroprotective role of melatonin (MT) has been proposed, and mitophagy regulation seems to be important for cell survival. However, the molecular mechanisms underlying MT-mediated mitophagy during HI treatment are poorly defined. Nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 (NLRX1) has emerged as a critical regulator of mitochondrial dynamics and neuronal death that participates in the pathology of diverse diseases. This study aimed to clarify whether NLRX1 participates in the regulation of mitophagy during MT treatment for hypoxic-ischemic brain damage (HIBD). We demonstrated that MT protected neonates from HIBD through NLRX1-mediated mitophagy in vitro and in vivo. Meanwhile, MT upregulated the expression of NLRX1, Beclin-1, and autophagy-related 7 (ATG7) but decreased the expression of the mammalian target of rapamycin (mTOR) and translocase of the inner membrane of mitochondrion 23 (TIM23). Moreover, the neuroprotective effects of MT were abolished by silencing NLRX1 after oxygen-glucose deprivation (OGD). In addition, the downregulation of mTOR and upregulation of Beclin-1 and ATG7 by MT were inhibited after silencing NLRX1 under OGD. In summary, MT modulates mitophagy induction through NLRX1 and plays a protective role in HIBD, providing insight into potential therapeutic targets for MT to exert neuroprotection.
Assuntos
Hipóxia-Isquemia Encefálica , Melatonina , Fármacos Neuroprotetores , Humanos , Recém-Nascido , Proteína Beclina-1/metabolismo , Encéfalo/metabolismo , Glucose/farmacologia , Hipóxia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Leucina/farmacologia , Melatonina/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nucleotídeos , Oxigênio/farmacologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
Inducing early apoptosis in alveolar macrophages is one of the strategies influenza A virus (IAV) evolved to subvert host immunity. Correspondingly, the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 is reported to interact with virus polymerase basic protein 1-frame 2 (PB1-F2) accessory protein to counteract virus-induced apoptosis. Herein, we report that one of the F-box proteins, FBXO6, promotes proteasomal degradation of NLRX1, and thus facilitates IAV-induced alveolar macrophages apoptosis and modulates both macrophage survival and type I interferon (IFN) signaling. We observed that FBXO6-deficient mice infected with IAV exhibited decreased pulmonary viral replication, alleviated inflammatory-associated pulmonary dysfunction, and less mortality. Analysis of the lungs of IAV-infected mice revealed markedly reduced leukocyte recruitment but enhanced production of type I IFN in Fbxo6-/- mice. Furthermore, increased type I IFN production and decreased viral replication were recapitulated in FBXO6 knockdown macrophages and associated with reduced apoptosis. Through gain- and loss-of-function studies, we found lung resident macrophages but not bone marrow-derived macrophages play a key role in the differences FBXO6 signaling pathway brings in the antiviral immune response. In further investigation, we identified that FBXO6 interacted with and promoted the proteasomal degradation of NLRX1. Together, our results demonstrate that FBXO6 negatively regulates immunity against IAV infection by enhancing the degradation of NLRX1 and thus impairs the survival of alveolar macrophages and antiviral immunity of the host.
Assuntos
Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Macrófagos Alveolares/metabolismo , Antivirais/metabolismo , Macrófagos , Interferon Tipo I/metabolismo , Replicação Viral/fisiologia , Imunidade , Proteínas Mitocondriais/metabolismoRESUMO
BACKGROUND: Age-related macular degeneration (AMD) is a leading cause of impaired vision as well as some earlier effects, such as reading and face recognition. Oxidative damage and inflammation of retinal pigment epithelial (RPE) cells are major causes of AMD. Additionally, autophagy in RPE cells can lead to cellular homeostasis under oxidative stress. Nucleotide-binding oligomerization domain (NOD)-like receptor X1 (NLRX1) is a mysterious modulator of the immune system function which inhibits inflammatory response, attenuates reactive oxygen species (ROS) production, and regulates autophagy. This study attempted to explore the role of NLRX1 in oxidative stress, inflammation, and autophagy in AMD. METHODS: An in vitro model of AMD was built in human retinal pigment epithelial cell line 19 (ARPE-19) treated with H2O2. The cell viability, NLRX1 expressions, levels of superoxide dismutase (SOD), glutathione (GHS), and ROS, concentrations of interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), IL-6, and monocyte chemoattractant protein-1 (MCP-1), expressions of NLRX1, p62, LC3-II/LC3-I, FUNDC1, and NOD-like receptor protein 3 (NLRP3) inflammasome were expounded by cell counting kit-8, colorimetric, enzyme-linked immunosorbent serologic assay (ELISA), and Western blot assay. RESULTS: H2O2 treatment notably reduced the relative protein expression of NLRX1. Meanwhile, H2O2 incubation decreased cell viability, diminished SOD and GSH concentrations, accompanied with the increased level of ROS, enhanced IL-1ß, TNF-α, IL-6, and MCP-1 concentrations, and aggrandized the relative protein expression of p62 with reduced LC3-II/LC3-I ratio. Moreover, these results were further promoted with knockdown of NLRX1 and reversed with overexpression. Mechanically, silencing of NLRX1 further observably enhanced the relative levels of -phosphorylated FUNDC1/FUNDC1, and NLRP3 inflammasome-related proteins, while overexpression of NLRX1 exhibited inverse results in the H2O2-induced ARPE-19 cells. CONCLUSION: NLRX1 suppressed H2O2-induced oxidative stress and inflammation, and facilitated autophagy by suppressing FUNDC1 phosphorylation and NLRP3 activation in ARPE-19 cells.
Assuntos
Degeneração Macular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fosforilação , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Proteínas de Transporte , Inflamação/patologia , Autofagia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologiaRESUMO
BACKGROUND: Chronic morphine exposure induces immunosuppression in the peripheral and central nervous system, resulting in susceptibility of patients to invading pathogens. Mitophagy is a crucial regulator of inflammation, and dysregulated mitophagy may cause immunosuppression, but whether mitophagy is linked with morphine-induced immunosuppression in the brain remains unknown. NLRX1 is the only mitochondrially localized NOD family receptor protein which serves as a critical regulator in immunity and mitophagy activation, but it remains an enigma how NLRX1 functions in the crosstalk between microglial inflammatory defense and mitophagy in the presence of morphine. METHODS: Primary microglia and astrocytes, BV2 and MA cell lines were utilized. Mice were stimulated with repeated morphine treatment to mimic chronic morphine exposure, and activation of mitophagy, lysosomal functions, and inflammation were assayed in specific brain regions and immune organs with or without NLRX1-silencing. RESULTS: Morphine induced microglial mitophagy in a LC3 (microtubule-associated proteins light chain 3)-dependent manner, which was mediated by NLRX1. Contrastingly, morphine impaired lysosomal functions, including generation, acidification and mitophagosome-lysosome fusion, thus leading to insufficient mitophagy activation in microglia. NLRX1-silencing inhibited mitophagy activity and rescued lysosomal functions including generation and acidification in microglia. The NLRX1-mediated incomplete mitophagy in microglial cells contributed to immunosuppression and vulnerability towards pathogenic challenge after morphine treatment. In vivo, NLRX1-mediated microglial mitophagy activation by morphine was mainly located in the murine brain cortex, striatum, and cerebellum, where NLRX1 functioned as a negative immune regulator and facilitated septic shock. Collectively, microglial immune responses to septic shock were amenable to NLRX1 silencing in the brain with morphine treatment. CONCLUSION: Morphine activated insufficient mitophagy in microglia which was regulated by NLRX1, ultimately leading to host immunosuppression and susceptible conditions in the brain.
Assuntos
Mitofagia , Choque Séptico , Animais , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos NOD , Microglia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Morfina/toxicidade , Choque Séptico/metabolismo , Choque Séptico/patologiaRESUMO
Nucleotide binding and oligomerization domain (NOD)-like receptor (NLR) initially appeared in the public view as a cytoplasmic pathogen recognition receptor (PRR) that plays an important role in innate immunity. NLRX1 is currently the only NLR known to be located in mitochondria through a mechanism presumed to be associated with its special N-terminal domain, and it establishes a novel connection between mitochondrial function and disease pathophysiology. NLRX1 functions as a negative regulator of the body's inflammatory response. Concurrently, the role of NLRX1 in regulating mitochondrial autophagy and metabolism has also been confirmed. Based on accumulating evidence, NLRX1 is involved in the occurrence and development of various diseases, including autoimmune diseases and inflammatory diseases. Research on the roles of NLRX1 in cancer, nervous system diseases and metabolic diseases has also undergone qualitative advances. However, according to current research, the function of NLRX1 is controversial, and the opposite effect has even been observed. This new study suggests that this phenomenon may be related to the specific localization of NLRX1 in cells. To date, the biological function of NLRX1 has not been comprehensively explored, but studies have introduced some new directions. For example, some recent studies have shown that NLRX1 affects pyroptosis. In this review, we summarize existing research results on NLRX1, facilitating explorations of the potential mechanism of NLRX1 and the development of new treatment strategies.
Assuntos
Imunidade Inata , Proteínas Mitocondriais , Autofagia , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Nucleotídeos/metabolismoRESUMO
Nucleotide-binding oligomerization domain, leucine rich repeat containing X1 (NLRX1) is an emerging therapeutic target for a spectrum of human diseases. NX-13 is a small molecule therapeutic designed to target and activate NLRX1 to induce immunometabolic changes resulting in lower inflammation and therapeutic responses in inflammatory bowel disease (IBD). This study investigates the safety of NX-13 in a seven-day, repeat-dose general toxicity study in male and female Sprague Dawley rats at oral doses of 500 and 1000 mg/kg. Weights, clinical signs, functional observational battery, clinical pathology and histopathology were used for evaluation. Daily oral dosing of NX-13 up to 1000 mg/kg did not result in any changes in weight, abnormal clinical signs or behavior. No significant differences were observed between treated and control rats in hematology or blood biochemistry. Histopathological evaluation of 12 tissues demonstrated no differences between controls and treated rats. There were no changes in weights of brain, heart, kidney, liver or spleen. Pharmacokinetic analysis of a single oral dose of NX-13 at 10 mg/kg in Sprague Dawley rats provided a maximum plasma concentration of 57 ng/mL at 0.5 h post-dose. Analysis of colon tissue after oral dosing with 1 and 10 mg/kg indicated high peak concentrations (10 and 100 µg/g, respectively) that scale in a dose-proportional manner. These experiments suggest that NX-13 is safe and well-tolerated in rats given oral doses as high as 1000 mg/kg with a favorable gastrointestinal localized pharmacokinetic profile, confirming NX-13 as a promising therapeutic for Crohn's disease and ulcerative colitis.
Assuntos
Doenças Inflamatórias Intestinais , Roedores , Administração Oral , Animais , Feminino , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Masculino , Piridinas , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Dexmedetomidine (Dex) is a safe and effective anesthetic adjunct which also has neuroprotective roles. This study aimed to validate the role of Dex in hypoxic-ischemic brain damage (HIBD) in neonatal rats and the functional molecules. METHODS: A neonatal rat model of HIBD was established and treated with Dex. The learning and memory abilities of rats were determined by Morris water maze tests. The left-hemisphere encephalatrophy, pathological changes, neuronal apoptosis, and inflammation in rat hippocampal tissues were examined to evaluate the treating effects of Dex on HIBD. Differentially expressed microRNAs (miRNAs) in rats with HIBD were screened using microarray analysis. Potential downstream molecules mediated by miR-134-5p were predicted using bioinformatics analysis. Altered expression of miR-134-5p and NLR family member X1 (NLRX1) was induced in rats after Dex treatment for rescue experiments. RESULTS: Dex treatment significantly enhanced the learning and memory abilities of rats and reduced encephalatrophy in rats. It also alleviated pathological changes, neuronal apoptosis, and the production of pro-inflammatory cytokines in rat hippocampal tissues. miR-134-5p was significantly upregulated in rats with HIBD. Dex treatment reduced the expression of miR-134-5p. NLRX1 was a target gene of miR-134-5p and it reduced the phosphorylation of IκBα and p65, namely the activation of NF-κB signaling. Overexpression of miR-134-5p blocked, whereas overexpression of NLRX1 strengthened the protective effects of Dex on neonatal rats. CONCLUSION: This study demonstrates that Dex treatment can alleviate HIBD in neonatal rats through restoring NLRX1 expression by suppressing miR-134-5p.
Assuntos
Dexmedetomidina , Hipóxia-Isquemia Encefálica , MicroRNAs , Proteínas Mitocondriais , Animais , Animais Recém-Nascidos , Apoptose , Dexmedetomidina/farmacologia , Regulação para Baixo , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/genética , MicroRNAs/genética , Proteínas Mitocondriais/genética , RatosRESUMO
NLRX1 is a member of the NOD-like receptor family, a set of pattern recognition receptors associated with innate immunity. Interestingly, NLRX1 exists in somewhat of an exile from its NLR counterparts with unique features that mediate atypical functions compared with traditional NOD-like receptors (NLRs). Aside from a mitochondrial targeting sequence, the N-terminal region is yet to be characterized. Mitochondrially located, NLRX1 sits within a subgroup of regulatory NLRs responsible for negatively regulating cellular inflammatory signalling. As well as modulating pathogen response, emerging evidence is implicating NLRX1 as a central homeostatic gatekeeper between mitochondrial biology and immunological response. More recently, NLRX1 has been implicated in a wide range of disease, both pathogen-driven and otherwise. Emerging links of NLRX1 in cancer biology, autoimmunity and other inflammatory conditions are raising the potential of targeting NLRX1 therapeutically, with recent studies in inflammatory bowel disease showing great promise. Within this review, we address the unique features of NLRX1, its roles in innate immune signalling and its involvement in a range of inflammatory, metabolic and oncology disease indications with a focus on areas that could benefit from therapeutic targeting of NLRX1.
Assuntos
Imunidade Inata/imunologia , Proteínas Mitocondriais/imunologia , Animais , HumanosRESUMO
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Assuntos
Doenças do Sistema Imunitário/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/metabolismo , Especificidade de ÓrgãosRESUMO
BACKGROUND: Acute inflammation induced by reactive astrocytes after cerebral ischemia/reperfusion (I/R) injury is important for protecting the resultant lesion. Our previous study demonstrated that DJ-1 is abundantly expressed in reactive astrocytes after cerebral I/R injury. Here, we show that DJ-1 negatively regulates the inflammatory response by facilitating the interaction between SHP-1 and TRAF6, thereby inducing the dissociation of NLRX1 from TRAF6. METHODS: We used oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro in primary astrocyte cultures and transient middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo to mimic I/R insult. RESULTS: The inhibition of DJ-1 expression increased the expression of the inflammatory cytokines TNF-α, IL-1ß, and IL-6. DJ-1 knockdown facilitated the interaction between NLRX1 and TRAF6. However, the loss of DJ-1 attenuated the interaction between SHP-1 and TRAF6. In subsequent experiments, a SHP-1 inhibitor altered the interaction between SHP-1 and TRAF6 and facilitated the interaction between NLRX1 and TRAF6 in DJ-1-overexpressing astrocytes. CONCLUSION: These findings suggest that DJ-1 exerts an SHP-1-dependent anti-inflammatory effect and induces the dissociation of NLRX1 from TRAF6 during cerebral I/R injury. Thus, DJ-1 may be an efficacious therapeutic target for the treatment of I/R injury.
Assuntos
Astrócitos/metabolismo , Proteína Desglicase DJ-1/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Inflamação/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Ratos , Ratos Sprague-Dawley , Fator 6 Associado a Receptor de TNF/metabolismoRESUMO
BACKGROUND: Viral myocarditis (VMC) is a type of cardiac inflammation that is generally caused by coxsackievirus B3 (CVB3) infection. Several MicroRNAs (miRNAs) are known to play crucial roles in VMC pathogenesis. MiR-15 is reportedly associated with myocardial injury, inflammatory responses and viral infection. Whether miR-15 affects the occurrence and development of VMC remains largely unknown. The roles of miR-15 and their underlying mechanisms in CVB3-stimulated H9c2 cells were assessed in this study. METHODS: We infected H9c2 cells with CVB3 to establish a VMC cellular model. We then determined the effects of miR-15 inhibition on three cardiomyocyte injury markers: lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and cardiac troponin-I (cTn-I). The impact on CVB3-induced cell apoptosis and pro-inflammatory cytokines was also investigated. The effects of miR-15 inhibition on NLRP3 inflammasome activation were also assessed. The target relationship between miR-15 and NOD-like receptor X1 (NLRX1) was determined using a luciferase reporter assay. RESULTS: MiR-15 expression was significantly upregulated in H9c2 cells after CVB3 infection. Inhibition of miR-15 significantly decreased the CVB3-induced levels of LDH, CK-MB and cTn-I. It also elevated cell viability, reduced CVB3-induced cell apoptosis and decreased the generation of the interleukins IL-1ß, IL-6 and IL-18. Furthermore, we determined that miR-15 inhibition suppressed NLRP3 inflammasome activation by downregulating NLRP3 and caspase-1 p20 expression. We found a direct target relationship between miR-15 and NLRX1. Additionally, inhibition of NLRX1 reversed the protective effects of miR-15 inhibition against CVB3-induced myocardial cell injury by regulating the NLRP3 inflammasome. CONCLUSION: Our results indicate that miR-15 inhibition alleviates CVB3-induced myocardial inflammation and cell injury. This may be partially due to NLRX1-mediated NLRP3 inflammasome inactivation.
Assuntos
Apoptose/genética , Infecções por Coxsackievirus/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/genética , Infecções por Coxsackievirus/genética , Creatina Quinase Forma MB/metabolismo , Citocinas/metabolismo , Inflamação/genética , L-Lactato Desidrogenase/metabolismo , Miocardite/enzimologia , Miocardite/genética , Miocardite/virologia , Miócitos Cardíacos/enzimologia , Ratos , Regulação para CimaRESUMO
The role of mitochondria is emerging in regulation of innate immunity, inflammation and cell death beyond its primary role in energy metabolism. Mitochondria act as molecular platform for immune adaptor protein complexes, which participate in innate immune signaling. The mitochondrial localized immune adaptors are widely expressed in non-immune cells, however their role in regulation of mitochondrial function and metabolic adaption is not well understood. NLRX1, a member of NOD family receptor proteins, localizes to mitochondria and is a negative regulator of anti-viral signaling. However, the submitochondrial localization of NLRX1 and its implication in regulation of mitochondrial functions remains elusive. Here, we confirm that NLRX1 translocates to mitochondrial matrix and associates with mitochondrial FASTKD5 (Fas-activated serine-threonine kinase family protein-5), a bonafide component of mitochondrial RNA granules (MRGs). The association of NLRX1 with FASTKD5 negatively regulates the processing of mitochondrial genome encoded transcripts for key components of complex-I and complex-IV, to modulate its activity and supercomplexes formation. The evidences, here, suggest an important role of NLRX1 in regulating the post-transcriptional processing of mitochondrial RNA, which may have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity.
Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Proteínas de Ligação a RNA/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Transporte Proteico , RNA Mitocondrial/genéticaRESUMO
Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/efeitos dos fármacos , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismoRESUMO
NLRX1, the mitochondrial NOD-like receptor (NLR), modulates apoptosis in response to both intrinsic and extrinsic cues. Insights into the mechanism of how NLRX1 influences apoptosis remain to be determined. Here, we demonstrate that NLRX1 associates with SARM1, a protein with a toll/interleukin-1 receptor (TIR)-containing domain also found in adaptor proteins downstream of toll-like receptors, such as MyD88. While a direct role of SARM1 in innate immunity is unclear, the protein plays essential roles in Wallerian degeneration (WD), a type of neuronal catabolism occurring following axonal severing or damage. In non-neuronal cells, we found that endogenous SARM1 was equally distributed in the cytosol and the mitochondrial matrix, where association with NLRX1 occurred. In these cells, the apoptotic role of NLRX1 was fully dependent on SARM1, indicating that SARM1 was downstream of NLRX1 in apoptosis regulation. In primary murine neurons, however, Wallerian degeneration induced by vinblastine or NGF deprivation occurred in SARM1- yet NLRX1-independent manner, suggesting that WD requires the cytosolic pool of SARM1 or that NLRX1 levels in neurons are too low to contribute to WD regulation. Together, these results shed new light into the mechanisms through which NLRX1 controls apoptosis and provides evidence of a new link between NLR and TIR-containing proteins.
Assuntos
Apoptose , Proteínas do Domínio Armadillo/imunologia , Axônios/imunologia , Proteínas do Citoesqueleto/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Proteínas Mitocondriais/imunologia , Animais , Proteínas do Domínio Armadillo/genética , Axônios/patologia , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Vimblastina/efeitos adversos , Vimblastina/farmacologia , Degeneração Walleriana/induzido quimicamente , Degeneração Walleriana/genética , Degeneração Walleriana/imunologia , Degeneração Walleriana/patologiaRESUMO
NOD-like receptor (NLR)X1 (NLRX1) is an ubiquitously expressed inflammasome-independent NLR that is uniquely localized in mitochondria with as yet unknown effects on metabolic diseases. Here, we report that NLRX1 is essential in regulating cellular metabolism in non-immune parenchymal hepatocytes by decreasing mitochondrial fatty acid-dependent oxidative phosphorylation (OXPHOS) and promoting glycolysis. NLRX1 loss in mice has a profound impact on the prevention of diet-induced metabolic syndrome parameters, non-alcoholic fatty liver disease (NAFLD) progression, and renal dysfunction. Despite enhanced caloric intake, NLRX1 deletion in mice fed a western diet (WD) results in protection from liver steatosis, hepatic fibrosis, obesity, insulin resistance, glycosuria and kidney dysfunction parameters independent from inflammation. While mitochondrial content was equal, NLRX1 loss in hepatocytes leads to increased fatty acid oxidation and decreased steatosis. In contrast, glycolysis was decreased in NLRX1-deficient cells versus controls. Thus, although first implicated in immune regulation, we show that NLRX1 function extends to the control of hepatocyte energy metabolism via the restriction of mitochondrial fatty acid-dependent OXPHOS and enhancement of glycolysis. As such NLRX1 may be an attractive novel therapeutic target for NAFLD and metabolic syndrome.
Assuntos
Gorduras na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Síndrome Metabólica/metabolismo , Proteínas Mitocondriais/deficiência , Animais , Gorduras na Dieta/farmacologia , Ácidos Graxos/genética , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Deleção de Genes , Hepatócitos/patologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologiaRESUMO
Activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. However, attenuation or termination of signaling is also necessary for preventing immune-mediated tissue damage and spontaneous autoimmunity. Here, we identify nucleotide binding oligomerization domain (NOD)-like receptor X1 (NLRX1) as a negative regulator of the mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathway during hepatitis C virus (HCV) infection. The depletion of NLRX1 enhances the HCV-triggered activation of interferon (IFN) signaling and causes the suppression of HCV propagation in hepatocytes. NLRX1, a HCV-inducible protein, interacts with MAVS and mediates the K48-linked polyubiquitination and subsequent degradation of MAVS via the proteasomal pathway. Moreover, poly(rC) binding protein 2 (PCBP2) interacts with NLRX1 to participate in the NLRX1-induced degradation of MAVS and the inhibition of antiviral responses during HCV infection. Mutagenic analyses further revealed that the NOD of NLRX1 is essential for NLRX1 to interact with PCBP2 and subsequently induce MAVS degradation. Our study unlocks a key mechanism of the fine-tuning of innate immunity by which NLRX1 restrains the retinoic acid-inducible gene I-like receptor (RLR)-MAVS signaling cascade by recruiting PCBP2 to MAVS for inducing MAVS degradation through the proteasomal pathway. NLRX1, a negative regulator of innate immunity, is a pivotal host factor for HCV to establish persistent infection.IMPORTANCE Innate immunity needs to be tightly regulated to maximize the antiviral response and minimize immune-mediated pathology, but the underlying mechanisms are poorly understood. In this study, we report that NLRX1 is a proviral host factor for HCV infection and functions as a negative regulator of the HCV-triggered innate immune response. NLRX1 recruits PCBP2 to MAVS and induces the K48-linked polyubiquitination and degradation of MAVS, leading to the negative regulation of the IFN signaling pathway and promoting HCV infection. Overall, this study provides intriguing insights into how innate immunity is regulated during viral infection.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepacivirus/imunologia , Hepatite C/imunologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Linhagem Celular , Células HEK293 , Hepacivirus/fisiologia , Humanos , Imunidade Inata , Proteínas Mitocondriais/genética , Mutação , Ligação Proteica , Domínios Proteicos , Proteólise , Transdução de Sinais , Replicação ViralRESUMO
To date, the mechanism (s) underlying the cisplatin-elicited ototoxicity has not been elucidated fully. Nucleotide-binding domain and leucine-rich-repeat-containing family member ×1 (NLRX1), a cytoplasmic pattern recognition receptor, is tightly related to mitochondrial function, reactive oxygen species (ROS) production, and autophagy. In this work, autophagy alteration, NLRX1 expression, ROS generation and cell injury were investigated correspondingly by immunofluorescence staining, western-blot, TEM, flow cytometry and MTT in HEI-OC1 cells of both NLRX1 overexpression and silencing in response to cisplatin stimulus. We found that NLRX1 expression was increased concurrent with the increase of autophagy activation in HEI-OC1 cells under the cisplatin insult. NLRX1 overexpression led to the amount of accumulation of autophagsomes in HEI-OC1 cells in normal condition and a higher activation of autophagy concurrent with cell injury in HEI-OC1 cells treated with cisplatin, whereas, NLRX1 silencing decreased the activation level of autophagy concurrent with increased cell viability in HEI-OC1 cells treated with cisplatin. Mechanistic studies showed that NLRX1 potentiated mitochondrial-derived ROS generation in response to cisplatin exposure. Inhibition of ROS generation significantly prevented autophagy activation and apoptosis both in HEI-OC1cells and cochlear explants treated with cisplatin. The findings from this work reveal that NLRX1 sensitizes auditory cells in vitro to cisplatin-induced ototoxity via autophagic cell death pathway, providing another strategy against cisplatin-induced ototoxity.
Assuntos
Antineoplásicos/toxicidade , Autofagia/fisiologia , Cisplatino/toxicidade , Células Ciliadas Auditivas/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/metabolismo , Órgão Espiral/ultraestrutura , Espécies Reativas de Oxigênio/metabolismoRESUMO
The nucleotide-binding domain and leucine-rich-repeat-containing (NLR) proteins regulate innate immunity. Although the positive regulatory impact of NLRs is clear, their inhibitory roles are not well defined. In the present study, the NLR family gene NLRX1 from grass carp (Ctenopharyngodon idella) was cloned and characterised. NLRX1 was widely expressed in all tissues examined, albeit at varying levels. After exposure to the grass carp reovirus (GCRV), NLRX1 mRNA expression levels were altered in immune organs, and dramatically altered in liver. Subcellular localisation indicated that NLRX1 protein co-localised with the mitochondria in the transfected cells. Additionally, the bimolecular fluorescence complementation (BiFC) system was introduced to detect the interaction between tumour necrosis factor (TNF) receptor associated factor 6 (TRAF6) and NLRX1. Moreover, deficient of NLRX1 in CIK cells with small interference RNA (siRNA) promoted polyinosinic:polycytidylic acid (poly (I:C))-induced IFN-related genes production, including IRF3, IRF7, and IFN-I, which reveals that NLRX1 is a negative regulator of IFN. Taken together, our results demonstrate that NLRX1 gene plays an important role in innate immune regulation and provide new insights into understanding the functional characteristics of the NLRX1 in teleosts.