Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999061

RESUMO

Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.


Assuntos
Dinorfinas , Receptores Opioides kappa , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/metabolismo , Dinorfinas/química , Dinorfinas/farmacologia , Humanos , Animais , Relação Estrutura-Atividade , Modelos Moleculares , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos
2.
Arch Pharm (Weinheim) ; 354(6): e2000409, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33666284

RESUMO

Syntheses of tetrahydroepoxy, O-allylic, O-prenylic, and O-propargylic tetrafluoronaphthalene derivatives, starting from 1-bromo-2,3,4,5,6-pentafluorobenzene, are reported here for the first time. The O-substituted tetrafluoronaphthalene derivatives were designed and also synthesized via a one-pot nucleophilic substitution reaction in excellent yields, whereas the tetrafluorotetrahydroepoxynaphthalene derivate was synthesized via a reduction reaction in excellent yield. The chemical structures of all the synthesized molecules were characterized by nuclear magnetic resonance, infrared spectroscopy, and high-resolution mass spectrometry techniques. In this study, a series of novel tetrafluoronaphthalene derivatives (2, 2a, 4-6) was tested toward several enzymes including α-glucosidase, acetylcholinesterase (AChE), and human carbonic anhydrase I and II (hCA I/II). The tetrafluoronaphthalene derivatives 2, 2a, and 4-6 showed IC50 and Ki values in the range of 0.83-1.27 and 0.71-1.09 nM against hCA I, 1.26-1.85 and 1.45-5.31 nM against hCA II, 39.02-56.01 and 20.53-56.76 nM against AChE, and 15.27-34.12 and 22.58-30.45 nM against α-glucosidase, respectively. Molecular docking calculations were made to determine the biological activity values of the tetrafluoronaphthalene derivatives against the enzymes. After the calculations, ADME/T analysis was performed to examine the effects on human metabolism. Finally, these compounds had antidiabetic and anticholinesterase potentials.


Assuntos
Inibidores da Anidrase Carbônica , Inibidores da Colinesterase , Inibidores Enzimáticos , Hipoglicemiantes , Naftalenos , Acetilcolinesterase/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Flúor/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/farmacologia , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA