RESUMO
BACKGROUND: Tumours with no evidence of neuroendocrine transformation histologically but harbouring neuroendocrine features are collectively referred to as non-small cell lung cancer (NSCLC) with neuroendocrine differentiation (NED). Investigating the mechanisms underlying NED is conducive to designing appropriate treatment options for NSCLC patients. METHODS: In the present study, we integrated multiple lung cancer datasets to identify neuroendocrine features using a one-class logistic regression (OCLR) machine learning algorithm trained on small cell lung cancer (SCLC) cells, a pulmonary neuroendocrine cell type, based on the transcriptome of NSCLC and named the NED index (NEDI). Single-sample gene set enrichment analysis, pathway enrichment analysis, ESTIMATE algorithm analysis, and unsupervised subclass mapping (SubMap) were performed to assess the altered pathways and immune characteristics of lung cancer samples with different NEDI values. RESULTS: We developed and validated a novel one-class predictor based on the expression values of 13,279 mRNAs to quantitatively evaluate neuroendocrine features in NSCLC. We observed that a higher NEDI correlated with better prognosis in patients with LUAD. In addition, we observed that a higher NEDI was significantly associated with reduced immune cell infiltration and immune effector molecule expression. Furthermore, we found that etoposide-based chemotherapy might be more effective in the treatment of LUAD with high NEDI values. Moreover, we noted that tumours with low NEDI values had better responses to immunotherapy than those with high NEDI values. CONCLUSIONS: Our findings improve the understanding of NED and provide a useful strategy for applying NEDI-based risk stratification to guide decision-making in the treatment of LUAD.
RESUMO
Cancer stemness has been reported to drive hepatocellular carcinoma (HCC) tumorigenesis and treatment resistance. In this study, five HCC cohorts with 1059 patients were collected to calculate transcriptional stemness indexes (mRNAsi) by the one-class logistic regression machine learning algorithm. In the TCGA-LIHC cohort, we found mRNAsi was an independent prognostic factor, and 626 mRNAsi-related genes were identified by Spearman correlation analysis. The HCC stemness risk model (HSRM) was trained in the TCGA-LIHC cohort and significantly discriminated overall survival in four independent cohorts. HSRM was also significantly associated with transarterial chemoembolization treatment response and rapid tumor growth in HCC patients. Consensus clustering was conducted based on mRNAsi-related genes to divide 1059 patients into two stemness subtypes. On gene set variation analysis, samples of subtype I were found enriched with pathways such as DNA replication and cell cycle, while several liver-specific metabolic pathways were inhibited in these samples. Somatic mutation analysis revealed more frequent mutations of TP53 and RB1 in the subtype I samples. In silico analysis suggested topoisomerase, cyclin-dependent kinase, and histone deacetylase as potential targets to inhibit HCC stemness. In vitro assay showed two predicted compounds, Aminopurvalanol-a and NCH-51, effectively suppressed oncosphere formation and impaired viability of HCC cell lines, which may shed new light on HCC treatment.
RESUMO
Tumor progression includes the obtainment of progenitor and stem cell-like features and the gradual loss of a differentiated phenotype. Stemness was defined as the potential for differentiation and self-renewal from the cell of origin. Previous studies have confirmed the effective application of stemness in a number of malignancies. However, the mechanisms underlying the growth and maintenance of multiple myeloma (MM) stem cells remain unclear. We calculated the stemness index for samples of MM by utilizing a novel one-class logistic regression (OCLR) machine learning algorithm and found that mRNA expression-based stemness index (mRNAsi) was an independent prognostic factor of MM. Based on the same cutoff value, mRNAsi could stratify MM patients into low and high groups with different outcomes. We identified 127 stemness-related signatures using weighted gene co-expression network analysis (WGCNA) and differential expression analysis. Functional annotation and pathway enrichment analysis indicated that these genes were mainly involved in the cell cycle, cell differentiation, and DNA replication and repair. Using the molecular complex detection (MCODE) algorithm, we identified 34 pivotal signatures. Meanwhile, we conducted unsupervised clustering and classified the MM cohorts into three MM stemness (MMS) clusters with distinct prognoses. Samples in MMS-cluster3 possessed the highest stemness fractions and the worst prognosis. Additionally, we applied the ESTIMATE algorithm to infer differential immune infiltration among the three MMS clusters. The immune core and stromal score were significantly lower in MMS-cluster3 than in the other clusters, supporting the negative relation between stemness and anticancer immunity. Finally, we proposed a prognostic nomogram that allows for individualized assessment of the 3- and 5-year overall survival (OS) probabilities among patients with MM. Our study comprehensively assessed the MM stemness index based on large cohorts and built a 34-gene based classifier for predicting prognosis and potential strategies for stemness treatment.
RESUMO
Glioblastoma (GBM) is the most common glial tumour and has extremely poor prognosis. GBM stem-like cells drive tumorigenesis and progression. However, a systematic assessment of stemness indices and their association with immunological properties in GBM is lacking. We collected 874 GBM samples from four GBM cohorts (TCGA, CGGA, GSE4412, and GSE13041) and calculated the mRNA expression-based stemness indices (mRNAsi) and corrected mRNAsi (c_mRNAsi, mRNAsi/tumour purity) with OCLR algorithm. Then, mRNAsi/c_mRNAsi were used to quantify the stemness traits that correlated significantly with prognosis. Additionally, confounding variables were identified. We used discrimination, calibration, and model improvement capability to evaluate the established models. Finally, the CIBERSORTx algorithm and ssGSEA were implemented for functional analysis. Patients with high mRNAsi/c_mRNAsi GBM showed better prognosis among the four GBM cohorts. After identifying the confounding variables, c_mRNAsi still maintained its prognostic value. Model evaluation showed that the c_mRNAsi-based model performed well. Patients with high c_mRNAsi exhibited significant immune suppression. Moreover, c_mRNAsi correlated negatively with infiltrating levels of immune-related cells. In addition, ssGSEA revealed that immune-related pathways were generally activated in patients with high c_mRNAsi. We comprehensively evaluated GBM stemness indices based on large cohorts and established a c_mRNAsi-based classifier for prognosis prediction.
RESUMO
Developmental dysplasia of the hip (DDH) may require early abduction treatment with infants sleeping on their back for the first few months of life. As sleeping on back is known to cause deformational plagiocephaly, we assessed school age children treated for dislocation or subluxation of the hip-joint in infancy. Plagiocephaly was analyzed by using cephalic index (CI) and oblique cranial length ratio (OCLR) as anthropometric measurements from 2D digital vertex view photographs. Six of the 58 (10.3%) DDH children and only one of the 62 (1.6%) control children had plagiocephaly (p = 0.041). Furthermore, cross bite was found in 14 (24.1%) of the DDH children and in 7 (10.3%) of the control children. Developmental dysplasia of the hip in infancy was associated with cranial asymmetries and malocclusions at school age. Preventive measures should be implemented.