Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(23): 4784-4798.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800360

RESUMO

Calcium influx through plasma membrane calcium release-activated calcium (CRAC) channels, which are formed of hexamers of Orai1, is a potent trigger for many important biological processes, most notably in T cell-mediated immunity. Through a bioinformatics-led cell biological screen, we have identified Orai1 as a substrate for the rhomboid intramembrane protease RHBDL2. We show that RHBDL2 prevents stochastic calcium signaling in unstimulated cells through conformational surveillance and cleavage of inappropriately activated Orai1. A conserved disease-linked proline residue is responsible for RHBDL2's recognizing the active conformation of Orai1, which is required to sharpen switch-like signaling triggered by store-operated calcium entry. Loss of RHBDL2 control of CRAC channel activity causes severe dysregulation of downstream CRAC channel effectors, including transcription factor activation, inflammatory cytokine expression, and T cell activation. We propose that this surveillance function may represent an ancient activity of rhomboid proteases in degrading unwanted signaling proteins.


Assuntos
Proteína ORAI1/química , Peptídeo Hidrolases/química , Serina Endopeptidases/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Biologia Computacional , Drosophila melanogaster , Células HEK293 , Humanos , Ativação do Canal Iônico , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Processos Estocásticos
2.
EMBO J ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420094

RESUMO

Tubular aggregate myopathy (TAM) is a heritable myopathy primarily characterized by progressive muscle weakness, elevated levels of creatine kinase (CK), hypocalcemia, exercise intolerance, and the presence of tubular aggregates (TAs). Here, we generated a knock-in mouse model based on a human gain-of-function mutation which results in a severe, early-onset form of TAM, by inducing a glycine-to-serine point mutation in the ORAI1 pore (Orai1G100S/+ or GS mice). By 8 months of age, GS mice exhibited significant muscle weakness, exercise intolerance, elevated CK levels, hypocalcemia, and robust TA presence. Unexpectedly, constitutive Ca2+ entry in mutant mice was observed in muscle only during early development and was abolished in adult skeletal muscle, partly due to reduced ORAI1 expression. Consistent with proteomic results, significant mitochondrial damage and dysfunction was observed in skeletal muscle of GS mice. Thus, GS mice represent a powerful model for investigation of the pathophysiological mechanisms that underlie key TAM symptoms, as well as those compensatory responses that limit the damaging effects of uncontrolled ORAI1-mediated Ca2+ influx.

3.
EMBO J ; 41(19): e110046, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36039850

RESUMO

The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.


Assuntos
Sinalização do Cálcio , Melanoma , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Colesterol , Glucose , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
4.
Immunity ; 47(4): 664-679.e6, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29030115

RESUMO

Store-operated Ca2+ entry (SOCE) is the main Ca2+ influx pathway in lymphocytes and is essential for T cell function and adaptive immunity. SOCE is mediated by Ca2+ release-activated Ca2+ (CRAC) channels that are activated by stromal interaction molecule (STIM) 1 and STIM2. SOCE regulates many Ca2+-dependent signaling molecules, including calcineurin, and inhibition of SOCE or calcineurin impairs antigen-dependent T cell proliferation. We here report that SOCE and calcineurin regulate cell cycle entry of quiescent T cells by controlling glycolysis and oxidative phosphorylation. SOCE directs the metabolic reprogramming of naive T cells by regulating the expression of glucose transporters, glycolytic enzymes, and metabolic regulators through the activation of nuclear factor of activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient-sensing pathway. We propose that SOCE controls a critical "metabolic checkpoint" at which T cells assess adequate nutrient supply to support clonal expansion and adaptive immune responses.


Assuntos
Canais de Cálcio/imunologia , Sinalização do Cálcio/imunologia , Cálcio/imunologia , Linfócitos T/imunologia , Animais , Calcineurina/imunologia , Calcineurina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Divisão Celular/imunologia , Células Cultivadas , Feminino , Glicólise/imunologia , Células HEK293 , Humanos , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/imunologia , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/imunologia , Molécula 2 de Interação Estromal/metabolismo , Linfócitos T/metabolismo
5.
Mol Cell ; 70(2): 228-241.e5, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677491

RESUMO

The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca2+ channels and suggest a therapeutic strategy for treating mite-induced asthma.


Assuntos
Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Sinalização do Cálcio , Movimento Celular , Mastócitos/metabolismo , Mucosa Nasal/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pyroglyphidae/enzimologia , Receptores de Trombina/metabolismo , Serina Endopeptidases/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Antígenos de Dermatophagoides/efeitos adversos , Antígenos de Dermatophagoides/genética , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/efeitos adversos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Asma/imunologia , Asma/metabolismo , Células HEK293 , Humanos , Exposição por Inalação , Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico , Células Jurkat , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Mucosa Nasal/imunologia , Pyroglyphidae/genética , Pyroglyphidae/imunologia , Receptor PAR-2 , Receptores Acoplados a Proteínas G/metabolismo , Serina Endopeptidases/efeitos adversos , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia
6.
Proc Natl Acad Sci U S A ; 120(35): e2301410120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607230

RESUMO

The membrane contact site ER/PM junctions are hubs for signaling pathways, including Ca2+ signaling. Phosphatidylserine (PtdSer) mediates various physiological functions; however, junctional PtdSer composition and the role of PtdSer in Ca2+ signaling and Ca2+-dependent gene regulation are not understood. Here, we show that STIM1-formed junctions are required for PI(4)P/PtdSer exchange by ORP5 and ORP8, which have reciprocal lipid exchange modes and function as a rheostat that sets the junctional PtdSer/PI(4)P ratio. Targeting the ORP5 and ORP8 and their lipid transfer ORD domains to PM subdomains revealed that ORP5 sets low and ORP8 high junctional PI(4)P/PtdSer ratio that controls STIM1-STIM1 and STIM1-Orai1 interaction and the activity of the SERCA pump to determine the pattern of receptor-evoked Ca2+ oscillations, and consequently translocation of NFAT to the nucleus. Significantly, targeting the ORP5 and ORP8 ORDs to the STIM1 ER subdomain reversed their function. Notably, changing PI(4)P/PtdSer ratio by hydrolysis of PM or ER PtdSer with targeted PtdSer-specific PLA1a1 reproduced the ORPs function. The function of the ORPs is determined both by their differential lipid exchange modes and by privileged localization at the ER/PM subdomains. These findings reveal a role of PtdSer as a signaling lipid that controls the available PM PI(4)P, the unappreciated role of ER PtdSer in cell function, and the diversity of the ER/PM junctions. The effect of PtdSer on the junctional PI(4)P level should have multiple implications in cellular signaling and functions.


Assuntos
Fosfatidilserinas , Transdução de Sinais , Núcleo Celular , Hidrólise , Membranas Mitocondriais
7.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952941

RESUMO

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Assuntos
Cálcio , Dinoprostona , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Adjuvante de Freund/toxicidade , Adjuvante de Freund/metabolismo , Gânglios Espinais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dor
8.
J Biol Chem ; 300(10): 107786, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303919

RESUMO

Resting cytosolic Ca2+ concentration is tightly regulated to fine-tune Ca2+-dependent cellular functions. Luminal breast cancer cells exhibit constitutive Ca2+ entry mediated by Orai1 and the secretory pathway Ca2+-ATPase, SPCA2, which result in mammary microcalcifications that constitute a prognostic marker of mammary lesions. Two Orai1 isoforms have been identified, the full-length Orai1α, consisting of 301 amino acids, and the short variant, Orai1ß, lacking the 63 or 70 N-terminal amino acids comprising residues involved in channel inactivation and binding sites with Orai1 partners. We show that only the mammalian-specific Orai1α rescues SPCA2-dependent constitutive Ca2+ entry in Orai1-KO MCF7 cells, a widely used luminal breast cancer cell line. FRET analysis and immunoprecipitation revealed that Orai1α shows a greater ability to interact with SPCA2 than Orai1ß. Deletion of the first 38 amino acids in Orai1α reduced the interaction with SPCA2 to a similar extent as Orai1ß, thus suggesting that the N-terminal 38 amino acids play a relevant role in Orai1α-SPCA2 interaction. Finally, Orai1α, but not Orai1ß, rescue the ability of Orai1-deficient cells to form in vitro microcalcifications. These findings provide compelling evidence for a functional role of Orai1α in constitutive Ca2+ entry in MCF7 cells, which might be a target to prevent the development of mammary microcalcifications in luminal breast cancer.

9.
FASEB J ; 38(14): e23825, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031532

RESUMO

Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.


Assuntos
Cálcio , Calpaína , Camundongos Knockout , Proteínas Musculares , Músculo Esquelético , Condicionamento Físico Animal , Animais , Calpaína/metabolismo , Camundongos , Cálcio/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Sinalização do Cálcio
10.
Mol Ther ; 32(3): 646-662, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291755

RESUMO

The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.


Assuntos
Adenilil Ciclases , Infarto do Miocárdio , Humanos , Ratos , Animais , Regulação para Cima , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Sinalização do Cálcio , Infarto do Miocárdio/genética , Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
11.
J Biol Chem ; 299(2): 102882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623731

RESUMO

Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1ß, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1ß lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1ß, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1ß is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCß activation. Our results indicate that Orai1α interacts with PKCß2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.


Assuntos
Canais de Cálcio , NF-kappa B , Proteína ORAI1 , Humanos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , NF-kappa B/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 299(8): 104970, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380078

RESUMO

Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.


Assuntos
Retículo Endoplasmático , Simulação de Dinâmica Molecular , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Temperatura , Humanos
13.
J Cell Physiol ; : e31450, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39359018

RESUMO

Store-operated Ca2+ entry is a mechanism controlled by the filling state of the intracellular Ca2+ stores, predominantly the endoplasmic reticulum (ER), where ER-resident proteins STIM1 and STIM2 orchestrate the activation of Orai channels in the plasma membrane, and Orai1 playing a predominant role. Two forms of Orai1, Orai1α and Orai1ß, have been identified, which arises the question whether they are equally regulated by STIM proteins. We demonstrate that STIM1 preferentially activates Orai1α over STIM2, yet both STIM proteins similarly activate Orai1ß. Under resting conditions, there is a pronounced association between STIM2 and Orai1α. STIM1 and STIM2 are also shown to influence the protein levels of the Orai1 variants, independently of Ca2+ influx, via lysosomal degradation. Interestingly, Orai1α and Orai1ß appear to selectively regulate the protein level of STIM1, but not STIM2. These observations offer crucial insights into the regulatory dynamics between STIM proteins and Orai1 variants, enhancing our understanding of the intricate processes that fine-tune intracellular Ca2+ signaling.

14.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34156466

RESUMO

Store-operated Ca2+ entry is a central component of intracellular Ca2+ signaling pathways. The Ca2+ release-activated channel (CRAC) mediates store-operated Ca2+ entry in many different cell types. The CRAC channel is composed of the plasma membrane (PM)-localized Orai1 channel and endoplasmic reticulum (ER)-localized STIM1 Ca2+ sensor. Upon ER Ca2+ store depletion, Orai1 and STIM1 form complexes at ER-PM junctions, leading to the formation of activated CRAC channels. Although the importance of CRAC channels is well described, the underlying mechanisms that regulate the recruitment of Orai1 to ER-PM junctions are not fully understood. Here, we describe the rapid and transient S-acylation of Orai1. Using biochemical approaches, we show that Orai1 is rapidly S-acylated at cysteine 143 upon ER Ca2+ store depletion. Importantly, S-acylation of cysteine 143 is required for Orai1-mediated Ca2+ entry and recruitment to STIM1 puncta. We conclude that store depletion-induced S-acylation of Orai1 is necessary for recruitment to ER-PM junctions, subsequent binding to STIM1 and channel activation.


Assuntos
Canais de Cálcio , Cálcio , Acilação , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
15.
Biochem Biophys Res Commun ; 733: 150723, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39312878

RESUMO

The human Orai1 (hOrai1) channel plays a crucial role in extracellular Ca2+ influx and has emerged as an attractive drug target for various diseases. However, the activated structure of the hOrai1 channel assembly within a lipid bilayer remains unknown. In this study, we expressed and purified the hOrai1 channel covalently linked to two SOAR tandems (HOSS). Patch-clamp experiments in whole-cell configuration showed that HOSS is constitutively active. Biochemical characterization confirmed that the purified HOSS channels were successfully incorporated into MSP1E3D1 nanodiscs. Negative staining revealed that the HOSS channels resemble a mushroom, with the body representing the hOrai1 channel and the leg representing the SOAR domain. Surprisingly, 2D analysis of cryo-EM data demonstrated a pentameric assembly of HOSS in a lipid bilayer. Our findings suggest that the hOrai1 channel may assemble into different oligomeric states in response to varying membrane environments.


Assuntos
Bicamadas Lipídicas , Proteína ORAI1 , Humanos , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Microscopia Crioeletrônica , Multimerização Proteica , Células HEK293 , Técnicas de Patch-Clamp , Cálcio/metabolismo
16.
Biochem Soc Trans ; 52(2): 747-760, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38526208

RESUMO

An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Cálcio , Retículo Endoplasmático , Proteína ORAI1 , Molécula 1 de Interação Estromal , Animais , Humanos , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
17.
Pancreatology ; 24(4): 528-537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637233

RESUMO

BACKGROUND: Store-operated Ca2+ entry (SOCE) mediated by ORAI1 channel plays a crucial role in acute pancreatitis (AP). Macrophage is an important regulator in amplifying pancreatic tissue damage, but little is known about the role of ORAI1 in macrophages. In this study, we examined the effects of macrophage-specific ORAI1 on pancreatic tissue damage in AP. METHOD: Myeloid-specific Orai1 deficient mice was generated by crossing a LysM-Cre mouse line with Orai1f/f mice. Bone marrow-derived macrophages (BMDMs) were isolated, cultured, and stimulated to induce M1 or M2 macrophage polarization. Intracellular Ca2+ signals were measured by time-lapse confocal microscope imaging, with a Ca2+ indicator (Fluo 4). Experimental AP was induced by hourly intraperitoneal injections of caerulein or retrograde biliopancreatic infusion of sodium taurocholate. Pancreatic tissue damage was assessed by histopathological scoring and immunostaining. Sepsis was induced by intraperitoneal injection of lipopolysaccharide; organ damage and serum pro-inflammatory cytokines were measured. RESULT: Myeloid-specific Orai1 deletion exhibited minimal effect on SOCE in M0 macrophages and promoted M2 macrophage polarization ex vivo. Myeloid-specific Orai1 deletion did not affect pancreatic tissue damage, nor neutrophil or macrophage infiltration in two models of AP. Similarly, myeloid-specific Orai1 deletion did not influence overall survival rate in a model of sepsis, nor lung, kidney, and liver damage; while serum pro-inflammatory cytokines, including IL-6, TNF-α, and IL-1ß were higher in Orai1ΔLysM mice, but were largely reduced in mice with Orai1 inhibitor. CONCLUSION: Our data suggest that ORAI1 may not be a predominant SOCE channel in macrophages and play a limited role in mediating pancreatic tissue damage in AP.


Assuntos
Macrófagos , Proteína ORAI1 , Pâncreas , Pancreatite , Animais , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Pancreatite/patologia , Pancreatite/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/genética , Camundongos , Macrófagos/metabolismo , Pâncreas/patologia , Pâncreas/metabolismo , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Deleção de Genes
18.
Circ Res ; 131(9): e102-e119, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36164973

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS: Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS: Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS: In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.


Assuntos
Compostos de Anilina , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Tiadiazóis , Animais , Humanos , Ratos , Compostos de Anilina/uso terapêutico , Calcineurina/metabolismo , Cálcio/metabolismo , Proliferação de Células/genética , Células Cultivadas , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/metabolismo , MAP Quinase Quinase 1/metabolismo , Monocrotalina/toxicidade , Miócitos de Músculo Liso/metabolismo , Proteína ORAI1 , Artéria Pulmonar/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Tiadiazóis/metabolismo
19.
Acta Pharmacol Sin ; 45(5): 975-987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279042

RESUMO

Endothelium-dependent contraction (EDC) exists in blood vessels of normotensive animals, but is exaggerated in hypertension. An early signal in EDC is cytosolic Ca2+ rise in endothelial cells. In this study we investigated the functional role of Orai1, a major endothelial cell Ca2+ entry channel, in EDC. Hypertension model was established in WT mice by intake of L-NNA in the drinking water (0.5 g/L) for 4 weeks or osmotic pump delivery of Ang II (1.5 mg·kg-1·d-1) for 2 weeks. In TRPC5 KO mice, the concentration of L-NNA and Ang II were increased to 1 g/L or 2 mg·kg-1·d-1, respectively. Arterial segments were prepared from carotid arteries and aortas, and EDC was elicited by acetylcholine in the presence of Nω-nitro-L-arginine methyl ester. We showed that low concentration of acetylcholine (3-30 nM) initiated relaxation in phenylephrine-precontracted carotid arteries of both normotensive and hypertensive mice, while high concentration of acetylcholine (0.1-2 µM) induced contraction. Application of selective Orai1 inhibitors AnCoA4 (100 µM) or YM58483 (400 nM) had no effect on ACh-induced relaxation but markedly reduced acetylcholine-induced EDC. We found that EDC was increased in hypertensive mice compared with that of normotensive mice, which was associated with increased Orai1 expression in endothelial cells of hypertensive mice. Compared to TRPC5 and TRPV4, which were also involved in EDC, endothelial cell Orai1 had relatively greater contribution to EDC than either TRPC5 or TRPV4 alone. We identified COX-2, followed by PGF2α, PGD2 and PGE2 as the downstream signals of Orai1/TRPC5/TRPV4. In conclusion, Orai1 coordinates together with TRPC5 and TRPV4 in endothelial cells to regulate EDC responses. This study demonstrates a novel function of Orai1 in EDC in both normotensive and hypertensive mice, thus providing a general scheme about the control of EDC by Ca2+-permeable channels.


Assuntos
Artérias Carótidas , Células Endoteliais , Endotélio Vascular , Hipertensão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína ORAI1 , Canais de Cátion TRPC , Animais , Proteína ORAI1/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Canais de Cátion TRPC/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Acetilcolina/farmacologia , Angiotensina II/farmacologia , Vasoconstrição/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-39049164

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of the synovial membrane that leads to the destruction of cartilage and bone. Currently, pharmacological targeting of ion channels is being increasingly recognized as an attractive and feasible strategy for the treatment of RA. The present work employs a network analysis approach to predict the most promising ion channel target for potential RA-treating drugs. A protein-protein interaction map was generated for 343 genes associated with inflammation in RA and ion channel genes using Search Tool for the Retrieval of Interacting Genes and visualized using Cytoscape. Based on the betweenness centrality and traffic values as key topological parameters, 17 hub nodes were identified, including FOS (9800.85), tumor necrosis factor (3654.60), TGFB1 (3305.75), and VEGFA (3052.88). The backbone network constructed with these 17 hub genes was intensely analyzed to identify the most promising ion channel target using network analyzer. Calcium permeating ion channels, especially store-operated calcium entry channels, and their associated regulatory proteins were found to highly interact with RA inflammatory hub genes. This significant ion channel target for RA identified by theoretical and statistical studies was further validated by a pilot case-control gene expression study. Experimental verification of the above findings in 75 RA cases and 25 controls showed increased ORAI1 expression. Thus, with a combination of network analysis approach and gene expression studies, we have explored potential targets for RA treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA