Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 135, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585491

RESUMO

BACKGROUND: Bacterial identification at the strain level is a much-needed, but arduous and challenging task. This study aimed to develop a method for identifying and differentiating individual strains among multiple strains of the same bacterial species. The set used for testing the method consisted of 17 Escherichia coli strains picked from a collection of strains isolated in Germany, Spain, the United Kingdom and Vietnam from humans, cattle, swine, wild boars, and chickens. We targeted unique or rare ORFan genes to address the problem of selective and specific strain identification. These ORFan genes, exclusive to each strain, served as templates for developing strain-specific primers. RESULTS: Most of the experimental strains (14 out of 17) possessed unique ORFan genes that were used to develop strain-specific primers. The remaining three strains were identified by combining a PCR for a rare gene with a selection step for isolating the experimental strains. Multiplex PCR allowed the successful identification of the strains both in vitro in spiked faecal material in addition to in vivo after experimental infections of pigs and recovery of bacteria from faecal material. In addition, primers for qPCR were also developed and quantitative readout from faecal samples after experimental infection was also possible. CONCLUSIONS: The method described in this manuscript using strain-specific unique genes to identify single strains in a mixture of strains proved itself efficient and reliable in detecting and following individual strains both in vitro and in vivo, representing a fast and inexpensive alternative to more costly methods.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Bovinos , Galinhas , Primers do DNA/genética , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Suínos
2.
Acta Virol ; 61(1): 123-126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28161966

RESUMO

Mimivirus was the first discovered amoebal giant virus. The Mimivirus virions are covered by a dense layer of approximately 130 nm-long fibers, the length and shape of which diverge from those of other viruses. Here, we aimed at expressing the L725 protein to further confirm and study its role as a fiber-associated protein. We report Escherichia coli expression of the L725 protein, which is encoded by a Mimivirus ORFan, was previously identified by proteomics in purified viral fibers and demonstrated to be a fiber-associated protein by RNA-silencing experiments. The expressed protein was recognized by anti-Mimivirus fiber or anti-Mimivirus L725 polyclonal antibodies. This study is the only expression, to our knowledge, of a product from a Mimiviral ORFan gene.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Mimiviridae/metabolismo , Proteínas Recombinantes , Proteínas Virais/metabolismo , Escherichia coli/metabolismo , Mimiviridae/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA