Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Dev Biol ; 481: 188-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755656

RESUMO

Germ cells develop into eggs and sperms and represent a lineage that survives through multiple generations. Germ cell specification during embryogenesis proceeds through one of two basic modes: either the cell-autonomous mode or the inductive mode. In the cell-autonomous mode, specification of germ cell fate involves asymmetric partitioning of the specialized maternal cytoplasm, known as the germplasm. Oikopleura dioica is a larvacean (class Appendicularia) and a chordate. It is regarded as a promising animal model for studying chordate development because of its short life cycle (5 days) and small genome size (∼60 â€‹Mb). We show that their embryos possess germplasm, as observed in ascidians (class Ascidiacea). The vegetal cytoplasm shifted towards the future posterior pole before the first cleavage occurred. A bilateral pair of primordial germ cells (PGC, B11 â€‹cells) was formed at the posterior pole at the 32-cell stage through two rounds of unequal cleavage. These B11 â€‹cells did not undergo further division before hatching of the tadpole-shaped larvae. The centrosome-attracting body (CAB) is a subcellular structure that contains the germplasm and plays crucial roles in germ cell development in ascidians. The presence of CAB with germplasm was observed in the germline lineage cells of larvaceans via electron microscopy and using extracted embryos. The CAB appeared at the 8-cell stage and persisted until the middle stage of embryogenesis. The antigen for the phosphorylated histone 3 antibody was localized to the CAB and persisted in the PGC until hatching after the CAB disappeared. Maternal snail mRNA, which encodes a transcription factor, was co-localized with the antigen for the H3S28p antibody. Furthermore, we found a novel PGC-specific subcellular structure that we call the germ body (GB). This study thus highlights the conserved and non-conserved features of germline development between ascidians and larvaceans. The rapid development and short life cycle (five days) of O. dioica would open the way to genetically analyze germ cell development in the future.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário , Células Germinativas/metabolismo , Urocordados/embriologia , Animais
2.
Dev Genes Evol ; 233(1): 35-47, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231211

RESUMO

Stem cell division contributes to the generation of various cell types during animal development, especially a diverse pool of neural cells in the nervous system. One example is reiterated unequal stem cell divisions, in which a large stem cell undergoes a series of oriented unequal divisions to produce a chain of small daughter cells that differentiate. We show that reiterated unequal stem cell divisions are involved in the formation of the brain in simple chordate appendicularians (larvaceans). Two large neuroblasts in the anterior and middle of the brain-forming region of hatched larvae were observed. They produced at least 30 neural cells out of 96 total brain cells before completion of brain formation at 10 hours after fertilization by reiterated unequal stem cell divisions. The daughter cells of the anterior neuroblast were postmitotic, and the number was at least 19. The neuroblast produced small daughter neural cells posteriorly every 20 min. The neural cells first moved toward the dorsal side, turned in the anterior direction, aligned in a single line according to their birth order, and showed collective movement to accumulate in the anterior part of the brain. The anterior neuroblast originated from the right-anterior blastomeres of the eight-cell embryos and the right a222 blastomere of the 64-cell embryo. The posterior neuroblast also showed reiterated unequal stem cell divisions, and generated at least 11 neural cells. Sequential unequal stem cell divisions without stem cell growth have been observed in protostomes, such as insects and annelids. The results provide the first examples of this kind of stem cell division during brain formation in non-vertebrate deuterostomes.


Assuntos
Cordados , Células-Tronco Neurais , Urocordados , Animais , Neurônios , Encéfalo , Divisão Celular
3.
Dev Growth Differ ; 64(1): 67-82, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34964127

RESUMO

The larvacean Oikopleura dioica is a cosmopolitan planktonic chordate and is closely related to vertebrates. It is characterized by a tadpole-shaped morphology with notochord flanked by muscle in the tail and brain on the dorsal side, a short life cycle of five days, a compact genome of approximately 56 Mb, a simple and transparent body with a small number of cells (~4000 in functional juveniles), invariant embryonic cell lineages, and fast development that ensures complete morphogenesis and organ formation 10 h after fertilization. With these features, this marine chordate is a promising and advantageous animal model in which genetic manipulation is feasible. In this review, we introduce relevant resources and modern techniques that have been developed: (1) Genome and transcriptomes. Oikopleura dioica has the smallest genome among non-parasitic metazoans. Its genome databases have been generated using three geographically distant O. dioica populations, and several intra-species sequence differences are becoming evident; (2) Functional genetic knockdown techniques. Comprehensive screening of genes is feasible using ovarian microinjection and double-strand DNA-induced gene knockdown; and (3) Live imaging of embryos and larvae. Application of these techniques has uncovered novel aspects of development, including meiotic cell arrest, left-right patterning, epidermal cell patterning, and mouth formation involving the connection of ectoderm and endoderm sheets. Oikopleura dioca has become very useful for developmental and evolutionary studies in chordates.


Assuntos
Cordados , Urocordados , Animais , Biologia do Desenvolvimento , Genoma , Morfogênese , Urocordados/genética
4.
Dev Biol ; 460(2): 155-163, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31857067

RESUMO

Unfertilized eggs of most animals are arrested at a certain point in the meiotic cell cycles. Reinitiation of meiosis and the start of embryogenesis are triggered by fertilization. This arrest is essential for preventing parthenogenetic activation and for promoting proper initiation of development by fertilization. In the larvacean Oikopleura dioica, which is a simple model organism for studies of chordate development, the unfertilized egg is arrested at metaphase of meiosis I. We show here that protein phosphatase 2A (PP2A) is essential for maintenance of meiotic arrest after spawning of oocytes. Knockdown (KD) of the maternal PP2A catalytic subunit, which was found in functional screening of maternal factors, caused unfertilized eggs to spontaneously release polar bodies after spawning, and then start pseudo-cleavages without fertilization, namely, parthenogenesis. Parthenogenetic embryos failed to undergo proper mitosis and cytokinesis because of lack of a centrosome, which is to be brought into the egg by a sperm. Activation of the KD oocytes was triggered by possible rise of ambient and intracellular pH upon their release from the gonad into seawater at spawning. Live recording of intracellular calcium level of the KD oocytes indicated that the pH rise caused an aberrant Ca2+ burst, which mimicked the Ca2+ burst that occurs at fertilization. Then, the aberrant Ca2+ burst triggered meiosis resumption through Calcium/calmodulin-dependent protein kinase (CaMK II). Therefore, PP2A is essential for maintenance of meiotic arrest and prevention of parthenogenesis by suppressing the aberrant Ca2+ burst at spawning.


Assuntos
Sinalização do Cálcio/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Meiose/fisiologia , Partenogênese/fisiologia , Proteína Fosfatase 2/metabolismo , Urocordados/enzimologia , Animais
5.
BMC Genomics ; 22(1): 222, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781200

RESUMO

BACKGROUND: The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65-70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved. RESULTS: Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome. CONCLUSIONS: We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica's highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Urocordados , Animais , Genoma , Masculino , Telômero/genética , Urocordados/genética
6.
Dev Biol ; 448(2): 247-259, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30213537

RESUMO

Oikopleura dioica, the only gonochoric species among appendicularians, has a spematozoon with a mid-piece and a conspicuous acrosome that, during fertilisation, undergoes a reaction forming an acrosomal process. To provide more insight into the spermatogenesis of a holoplanktonic tunicate species that completes its life cycle in three to five days, changes in the testis during individual growth have been examined. Spermatogenesis has been subdivided into seven stages based on ultrastructural features during the formation and organisation of the male gonad and the relationships between its macroscopic anatomy and the events of sperm differentiation. Gametes undergo highly synchronised differentiation due to the presence of widespread syncytial structures. Both meiosis and spermiogenesis are brief, and the passage from spermatocytes to spermatids involves a progressive segregation of the germ cells from the syncytial mass with the formation of large cytoplasmic bridges and volume reduction for nucleus compacting and cytoplasmic material changing. The nucleus is small and penetrated anteriorly by a complex acrosome and posteriorly by the distal centriole and part of the flagellum. In spermatids, the single, large mitochondrion appears laterally to the nucleus, and finally, in spermatozoa, it migrates into the mid-piece, wrapping the proximal portion of the axoneme. Because this mitochondrial position is reached only in the late phases of spermatogenesis, it suggests that appendicularians have derived oligopyrenic sperms in which the small nucleus results from adaptation to the assembly of numerous spermatozoa inside the narrow space of the testis compacted in the genital cavity. The formulation of a staging system of gonad development in a model tunicate species known for having the most compacted genome in chordates led to a comparison of histological observations with recent molecular data, improving the characterisation of its biology and life cycle in light of evolutionary implications.


Assuntos
Gônadas/embriologia , Espermatogênese , Urocordados/embriologia , Animais , Diferenciação Celular , Gônadas/citologia , Gônadas/ultraestrutura , Masculino , Meiose , Espermatozoides/citologia , Testículo/citologia , Testículo/embriologia , Testículo/ultraestrutura , Urocordados/citologia
7.
Dev Genes Evol ; 230(5-6): 315-327, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803391

RESUMO

Mouth formation involves the processes of mouth opening, formation of the oral cavity, and the development of associated sensory organs. In deuterostomes, the surface ectoderm and the anterior part of the archenteron are reconfigured and reconnected to make a mouth opening. This study of the larval development of the larvacean, Oikopleura dioica, investigates the cellular organization of the oral region, the developmental processes of the mouth, and the formation of associated sensory cells. O. dioica is a simple chordate whose larvae are transparent and have a small number of constituent cells. It completes organ morphogenesis in 7 h, between hatching 3 h after fertilization and the juvenile stage at 10 h, when it attains adult form and starts to feed. It has two types of mechanosensory cell embedded in the oral epithelium, which is a single layer of cells. There are twenty coronal sensory cells in the circumoral nerve ring and two dorsal sensory organ cells. Two bilateral lip precursor cells (LPCs), facing the anterior surface, divide dorsoventrally and make a wedge-shaped cleft between the two daughter cells named the dorsal lip cell (DLC) and the ventral lip cell (VLC). Eventually, the DLC and VLC become detached and separated into dorsal and ventral lips, triggering mouth opening. This is an intriguing example of cell division itself contributing to morphogenesis. The boundary between the ectoderm and endoderm is present between the lip cells and coronal sensory cells. All oral sensory cells, including dorsal sensory organ cells, were of endodermal origin and were not derived from the ectodermal placode. These observations on mouth formation provide a cellular basis for further studies at a molecular level, in this simple chordate.


Assuntos
Padronização Corporal , Lábio/embriologia , Morfogênese , Boca/embriologia , Urocordados/embriologia , Animais , Evolução Biológica , Divisão Celular , Células Epidérmicas , Larva/crescimento & desenvolvimento , Lábio/citologia , Modelos Biológicos , Boca/citologia , Imagem com Lapso de Tempo
8.
Cell Mol Life Sci ; 76(20): 4117-4130, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31028425

RESUMO

Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.


Assuntos
Evolução Biológica , Cordados/genética , Genoma , Família Multigênica , Filogenia , Proteínas rab de Ligação ao GTP/genética , Animais , Transporte Biológico , Cordados/classificação , Bases de Dados Genéticas , Éxons , Duplicação Gênica , Variação Genética , Humanos , Íntrons , Organelas/genética , Organelas/metabolismo , Domínios Proteicos , Sintenia , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
9.
Dev Biol ; 443(2): 117-126, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217597

RESUMO

The mechanisms driving innovations that distinguish large taxons are poorly known and essentially accessible via a candidate gene approach. A spectacular acquisition by tunicate larvaceans is the house, a complex extracellular filtration device. Its components are secreted by the oikoplastic epithelium which covers the animal trunk. Here we describe the development of this epithelium in larvae through the formation of specific cellular territories known to produce distinct sets of house proteins (Oikosins). It involves cell divisions and morphological differentiation but very limited cell migration. A diverse set of homeobox genes, most often duplicated in the genome, are transiently and site-specifically expressed in the trunk epithelium at early larval stages. Using RNA interference, we show that two prop duplicates are involved in the differentiation of a region on and around the dorsal midline, regulating morphology and the production of a specific oikosin. Our observations favor a scenario in which multiple homeobox genes and most likely other developmental transcription factors were recruited for this innovation. Their frequent duplications probably predated, but were not required for the emergence of the house.


Assuntos
Genes Homeobox/genética , Urocordados/genética , Urocordados/metabolismo , Animais , Evolução Biológica , Células Epiteliais/metabolismo , Epitélio/embriologia , Epitélio/crescimento & desenvolvimento , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/crescimento & desenvolvimento , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Dev Biol ; 428(1): 245-257, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602953

RESUMO

Mechanisms for morphogenetic processes that generate complex patterns in a reproducible manner remain elusive. Live imaging provides a powerful tool to record cell behaviors. The appendicularian, Oikopleura dioica, is a planktonic tunicate that has a rapid developmental speed, small number of cells (less than 3500 cells in a juvenile), and a transparent body. The trunk epidermis, called the oikoplastic epithelium (OE), has elaborate cellular arrangements showing a complex pattern to secrete so-called "house" made of extracellular components. The OE is characterized by invariant number, size, and shape of the monolayer epithelial cells. Pattern formation is achieved during 5h of larval development without growth of the body, making this a suitable system for live imaging of a two-dimensional (2D) sheet. First, we subdivided the OE and defined several domains by cellular resolution, and systematically gave names to the constituent cells, since there is no variation among individuals. Time-lapse imaging of the epidermal cells revealed region-specific pattern formation processes. Each identified domain served as a compartment into which distribution of descendant cells of founder cells is restricted. Regulation of orientation, timing, and the number of rounds of cell divisions, but not cell death and migration, was a critical mechanism for determination of final cell arrangement and size. In addition, displacement of epithelial sheet plates was observed in the Eisen domain. Stem-cell-like cell divisions, whereby large mother stem cells generate a chain of small daughter cells, were involved in formation of the Nasse region and ventral sensory organ. These are the first examples of this kind of stem-cell-like cell division in deuterostomes. Furthermore, labeling of the left or right blastomere of the two-cell-stage embryo, which roughly gives rise to the left or right side of the body, respectively, revealed that the boundary of the descendant cells does not match with the midline of the trunk epidermis. Left and right descendants largely invade into the opposite side in an invariant way, suggesting the possibility that specification of the OE cell identities may occur later in development, most probably around hatching, and depending on cell position in the OE epithelial sheet. These detailed descriptions of OE patterning processes provide basic and essential information to analyze further cell behaviors in the generation of elaborate and intricate but stereotyped 2D cellular patterns in this advantageous model system for developmental and cell biological studies in chordates.


Assuntos
Padronização Corporal/fisiologia , Epitélio/embriologia , Urocordados/embriologia , Animais , Divisão Celular , Linhagem da Célula , Células Epidérmicas , Morfogênese , Urocordados/citologia
11.
Adv Exp Med Biol ; 1029: 69-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29542081

RESUMO

Reporter analyses of Hox1 and Brachyury (Bra) genes have revealed examples of redundant enhancers that provide regulatory robustness. Retinoic acid (RA) activates through an RA-response element the transcription of Hox1 in the nerve cord of the ascidian Ciona intestinalis. We also found a weak RA-independent neural enhancer within the second intron of Hox1. The Hox1 gene in the larvacean Oikopleura dioica is also expressed in the nerve cord. The O. dioica genome, however, does not contain the RA receptor-encoding gene, and the expression of Hox1 has become independent of RA. We have found that the upstream sequence of the O. dioica Hox1 was able to activate reporter gene expression in the nerve cord of the C. intestinalis embryo, suggesting that an RA-independent regulatory system in the nerve cord might be common in larvaceans and ascidians. This RA-independent redundant regulatory system may have facilitated the Oikopleura ancestor losing RA signaling without an apparent impact on Hox1 expression domains. On the other hand, vertebrate Bra is expressed in the ventral mesoderm and notochord, whereas its ascidian ortholog is exclusively expressed in the notochord. Fibroblast growth factor (FGF) induces Bra in the ventral mesoderm in vertebrates, whereas it induces Bra in the notochord in ascidians. Disruption of the FGF signal does not completely silence Bra expression in ascidians, suggesting that FGF-dependent and independent enhancers might comprise a redundant regulatory system in ascidians. The existence of redundant enhancers, therefore, provides regulatory robustness that may facilitate the acquisition of new expression domains.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Urocordados/genética , Animais , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Elementos Facilitadores Genéticos/efeitos dos fármacos , Proteínas Fetais/genética , Proteínas Fetais/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Notocorda/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Tretinoína/fisiologia , Urocordados/embriologia
12.
Dev Genes Evol ; 227(5): 367-374, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752326

RESUMO

The appendicularian Oikopleura dioica is a planktonic chordate that retains a tadpole shape throughout its life. Its simple and transparent body, invariant cell lineages, fast development and available genome and transcriptome resources make it a promising model organism for research in developmental biology. However, large-scale analysis of gene expression in O. dioica is limited owing to the laborious and time-consuming process of manual removal of the vitelline membrane, because devitellinisation of pre-hatching embryos causes failure of normal development. Therefore, in this study, modified procedures were developed for whole-mount in situ hybridisation (WISH) and immunohistochemistry (WIHC). This protocol enables rapid mRNA or protein detection without a manual devitellination step for each specimen. The critical procedure is brief treatment of the vitelline membrane of living embryos with 0.05% actinase E before fixation. Two minutes of treatment was optimal for the penetration of antisense RNA probes and antibodies through the vitelline membrane. This WISH protocol was applicable for chromogenic and fluorescent tyramide signal amplification reactions. Using the new protocol, we found eight genes with tissue-specific expression in the tail muscle, trunk epidermis, heart, pharynx, oesophagus, stomach or gill openings of developing larvae. This procedure also allowed for the detection of exogenous FLAG-tagged histone-enhanced green fluorescent protein by WIHC using anti-FLAG antibody. This study provides a useful and convenient tool for studying spatial and temporal gene expression patterns in this simple chordate model and should facilitate handling large amounts of genetic data from transcriptome-based approaches and other techniques such as treatments with chemical inhibitors.


Assuntos
Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Urocordados/metabolismo , Membrana Vitelina/metabolismo , Animais , Linhagem da Célula , Embrião não Mamífero/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Especificidade de Órgãos , Urocordados/genética , Urocordados/crescimento & desenvolvimento
13.
Dev Biol ; 395(2): 299-306, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25224225

RESUMO

The appendicularian, Oikopleura dioica, is a planktonic chordate. Its simple and transparent body, invariant cell lineages and short life cycle of 5 days make it a promising model organism for studies of chordate development. Here we describe the cell migration that occurs during development of the O. dioica larva. Using time-lapse imaging facilitated by florescent labeling of cells, three cell populations exhibiting long-distance migration were identified and characterized. These included (i) a multinucleated oral gland precursor that migrates anteriorly within the trunk region and eventually separates into the left and right sides, (ii) endodermal strand cells that are collectively retracted from the tail into the trunk in a tractor movement, and (iii) two subchordal cell precursors that individually migrate out from the trunk to the tip of the tail. The migration of subchordal cell precursors starts when all of the endodermal strand cells enter the trunk, and follows the same path but in a direction opposite to that of the latter. Labeling of these cells with a photoconvertible fluorescent protein, Kaede, demonstrated that the endodermal strand cells and subchordal cell precursors have distinct origins and eventual fates. Surgical removal of the trunk from the tail demonstrated that the endodermal strand cells do not require the trunk for migration, and that the subchordal cell precursors would be attracted by the distal part of the tail. This well-defined, invariant and traceable long-distance cell migration provides a unique experimental system for exploring the mechanisms of versatile cell migration in this simple organism with a chordate body plan.


Assuntos
Movimento Celular/fisiologia , Morfogênese/fisiologia , Urocordados/crescimento & desenvolvimento , Animais , Endoderma/citologia , Endoderma/fisiologia , Glândulas Exócrinas/citologia , Células Gigantes/citologia , Células Gigantes/fisiologia , Japão , Larva/crescimento & desenvolvimento , Proteínas Luminescentes , Microdissecção , Imagem com Lapso de Tempo
14.
Proc Biol Sci ; 282(1807): 20150435, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904672

RESUMO

RNA interference is widely employed as a gene-silencing system in eukaryotes for host defence against invading nucleic acids. In response to invading double-stranded RNA (dsRNA), mRNA is degraded in sequence-specific manner. So far, however, DNA interference (DNAi) has been reported only in plants, ciliates and archaea, and has not been explored in Metazoa. Here, we demonstrate that linear double-stranded DNA promotes both sequence-specific transcription blocking and mRNA degradation in developing embryos of the appendicularian Oikopleura dioica. Introduced polymerase chain reaction (PCR) products or linearized plasmids encoding Brachyury induced tail malformation and mRNA degradation. This malformation was also promoted by DNA fragments of the putative 5'-flanking region and intron without the coding region. PCR products encoding Zic-like1 and acetylcholine esterase also induced loss of sensory organ and muscle acetylcholinesterase activity, respectively. Co-injection of mRNA encoding EGFP and mCherry, and PCR products encoding these fluorescent proteins, induced sequence-specific decrease in the green or red fluorescence, respectively. These results suggest that O. dioica possesses a defence system against exogenous DNA and RNA, and that DNA fragment-induced gene silencing would be mediated through transcription blocking as well as mRNA degradation. This is the first report of DNAi in Metazoa.


Assuntos
DNA/genética , Proteínas Fetais/genética , Inativação Gênica , Proteínas com Domínio T/genética , Urocordados/genética , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Proteínas Fetais/metabolismo , Íntrons , Dados de Sequência Molecular , Músculos/enzimologia , RNA Mensageiro/metabolismo , Órgãos dos Sentidos/enzimologia , Proteínas com Domínio T/metabolismo , Cauda/anormalidades , Urocordados/embriologia
15.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39162185

RESUMO

Oikopleura dioica is a planktonic tunicate (Appendicularia class) found extensively across the marine waters of the globe. The genome of a single male individual collected from Okinawa, Japan was sequenced using the single-molecule PacBio Hi-Fi method and assembled with NOVOLoci. The mitogenome is 39,268 bp long, featuring a large control region of around 22,000 bp. We annotated the proteins atp6, cob, cox1, cox2, cox3, nad1, nad4, and nad5, and found one more open reading frame that did not match any known gene. This study marks the first complete mitogenome assembly for an appendicularian, and reveals that A and T homopolymers cumulatively account for nearly half of its length. This reference sequence will be an asset for environmental DNA and phylogenetic studies.


Assuntos
Genoma Mitocondrial , Urocordados , Animais , Urocordados/genética , Masculino , Filogenia
16.
J R Soc Interface ; 20(208): 20230404, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37989229

RESUMO

Planktonic organisms feed while suspended in water using various hydrodynamic pumping strategies. Appendicularians are a unique group of plankton that use their tail to pump water over mucous mesh filters to concentrate food particles. As ubiquitous and often abundant members of planktonic ecosystems, they play a major role in oceanic food webs. Yet, we lack a complete understanding of the fluid flow that underpins their filtration. Using high-speed, high-resolution video and micro particle image velocimetry, we describe the kinematics and hydrodynamics of the tail in Oikopleura dioica in filtering and free-swimming postures. We show that sinusoidal waves of the tail generate peristaltic pumping within the tail chamber with fluid moving parallel to the tail when filtering. We find that the tail contacts attachment points along the tail chamber during each beat cycle, serving to seal the tail chamber and drive pumping. When we tested how the pump performs across environmentally relevant temperatures, we found that the amplitude of the tail was invariant but tail beat frequency increased threefold across three temperature treatments (5°C, 15°C and 25°C). Investigation into this unique pumping mechanism gives insight into the ecological success of appendicularians and provides inspiration for novel pump designs.


Assuntos
Ecossistema , Hidrodinâmica , Animais , Fenômenos Biomecânicos , Plâncton , Natação , Água , Cauda
17.
Curr Biol ; 33(18): 3872-3883.e6, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37643617

RESUMO

To gain insight into the evolution of motor control systems at the origin of vertebrates, we have investigated higher-order motor circuitry in the protochordate Oikopleura dioica. We have identified a highly miniaturized circuit in Oikopleura with a projection from a single pair of dopaminergic neurons to a small set of synaptically coupled GABAergic neurons, which in turn exert a disinhibitory descending projection onto the locomotor central pattern generator. The circuit is reminiscent of the nigrostriatopallidal system in the vertebrate basal ganglia, in which disinhibitory circuits release specific movements under the modulatory control of dopamine. We demonstrate further that dopamine is required to optimize locomotor performance in Oikopleura, mirroring its role in vertebrates. A dopamine-regulated disinhibitory locomotor control circuit reminiscent of the vertebrate nigrostriatopallidal system was thus already present at the origin of ancestral chordates and has been maintained in the face of extreme nervous system miniaturization in the urochordate lineage.


Assuntos
Cordados , Urocordados , Animais , Dopamina , Vertebrados , Sistema Nervoso
18.
F1000Res ; 9: 780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33728042

RESUMO

Oikopleura dioica is a ubiquitous marine tunicate of biological interest due to features that include dioecious reproduction, short life cycle, and vertebrate-like dorsal notochord while possessing a relatively compact genome. The use of tunicates as model organisms, particularly with these characteristics, offers the advantage of facilitating studies in evolutionary development and furthering understanding of enduring attributes found in the more complex vertebrates. At present, we are undertaking an initiative to sequence the genomes of Oikopleura individuals in populations found among the seas surrounding the Ryukyu Islands in southern Japan. To facilitate and validate genome assemblies, karyotyping was employed to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. New imaging data of embryos and oocytes stained with two different antibodies were obtained; interpretation of these data lead us to conclude that the Okinawan Oikopleura dioica has three pairs of chromosomes, akin to previous results from genomic assemblies in Atlantic populations. The imaging data have been deposited to the open-access EBI BioImage Archive for reuse while additionally providing representative images of two commercially available anti-H3S28P antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy.


Assuntos
Centrômero/imunologia , Cromossomos/genética , Urocordados , Animais , Anticorpos Monoclonais , Feminino , Japão , Cariotipagem , Masculino , Coloração e Rotulagem , Urocordados/genética
19.
F1000Res ; 8: 2072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32148763

RESUMO

Background: Ascidians, a tunicate class, use a mitochondrial genetic code that is distinct from vertebrates and other invertebrates. Though it has been used to translate the coding sequences from other tunicate species on a case-by-case basis, it is has not been investigated whether this can be done systematically. This is an important because a) some tunicate mitochondrial sequences are currently translated with the invertebrate code by repositories such as NCBI GenBank, and b) uncertainties about the genetic code to use can complicate or introduce errors in phylogenetic studies based on translated mitochondrial protein sequences. Methods: We collected publicly available nucleotide sequences for non-ascidian tunicates including appendicularians such as Oikopleura dioica, translated them using the ascidian mitochondrial code, and built multiple sequence alignments covering all tunicate classes. Results: All tunicates studied here appear to translate AGR codons to glycine instead of serine (invertebrates) or as a stop codon (vertebrates), as initially described in ascidians. Among Oikopleuridae, we suggest further possible changes in the use of the ATA (Ile → Met) and TGA (Trp → Arg) codons. Conclusions: We recommend using the ascidian mitochondrial code in automatic translation pipelines of mitochondrial sequences for all tunicates. Further investigation is required for additional species-specific differences.


Assuntos
Código Genético , Filogenia , Urocordados , Animais , Sequência de Bases , Mitocôndrias , Urocordados/genética
20.
Curr Biol ; 28(20): 3337-3341.e4, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30293719

RESUMO

Classical non-homologous end joining (c-NHEJ), a fundamental pathway that repairs double-strand breaks in DNA, is almost universal in eukaryotes and involves multiple proteins highly conserved from yeast to human [1]. The genes encoding these proteins were not detected in the genome of Oikopleura dioica, a new model system of tunicate larvaceans known for its very compact and highly rearranged genome [2-4]. After showing their absence in the genomes of six other larvacean species, the present study examined how O. dioica oocytes and embryos repair double-strand DNA breaks (DSBs), using two approaches: the injection of linearized plasmids, which resulted in their rapid end joining, and a newly established CRISPR Cas9 technique. In both cases, end joining merged short microhomologous sequences surrounding the break (mainly 4 bp long), thus inducing deletions larger than for the tunicate ascidian Ciona intestinalis and human cells. A relatively high frequency of nucleotide insertions was also observed. Finally, a survey of genomic indels supports the involvement of microhomology-mediated repair in natural conditions. Overall, O. dioica repairs DSBs as other organisms do when their c-NHEJ pathway is experimentally rendered deficient, using another mode of end joining with the same effect as alternative NHEJ (a-NHEJ) or microhomology-mediated end joining (MMEJ) [5-7]. We discuss how the exceptional loss of c-NHEJ and its replacement by a more mutation-prone mechanism may have contributed to reshaping this genome and even been advantageous under pressure for genome compaction.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Urocordados/genética , Animais , Sequência de Bases , Quebras de DNA de Cadeia Dupla , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Mutação , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Urocordados/embriologia , Urocordados/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA