Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.851
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(3): 567-584.e19, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348886

RESUMO

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/classificação , Linfócitos B/citologia , Linfócitos B/metabolismo , Cristalografia por Raios X , Feminino , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/classificação , HIV-1/metabolismo , Humanos , Macaca mulatta , Masculino , Peptídeos/química , Estrutura Terciária de Proteína , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
2.
Cell ; 174(1): 117-130.e14, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29909981

RESUMO

Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8+ T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8+ T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Genes Controladores do Desenvolvimento , Listeria monocytogenes/patogenicidade , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Citocinas/farmacologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Memória Imunológica , Interferon gama/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Listeria monocytogenes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/transplante , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Cell ; 175(2): 400-415.e13, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30173915

RESUMO

Macrophages are highly heterogeneous tissue-resident immune cells that perform a variety of tissue-supportive functions. The current paradigm dictates that intestinal macrophages are continuously replaced by incoming monocytes that acquire a pro-inflammatory or tissue-protective signature. Here, we identify a self-maintaining population of macrophages that arise from both embryonic precursors and adult bone marrow-derived monocytes and persists throughout adulthood. Gene expression and imaging studies of self-maintaining macrophages revealed distinct transcriptional profiles that reflect their unique localization (i.e., closely positioned to blood vessels, submucosal and myenteric plexus, Paneth cells, and Peyer's patches). Depletion of self-maintaining macrophages resulted in morphological abnormalities in the submucosal vasculature and loss of enteric neurons, leading to vascular leakage, impaired secretion, and reduced intestinal motility. These results provide critical insights in intestinal macrophage heterogeneity and demonstrate the strategic role of self-maintaining macrophages in gut homeostasis and intestinal physiology.


Assuntos
Intestinos/imunologia , Macrófagos/imunologia , Animais , Padronização Corporal/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Motilidade Gastrointestinal/imunologia , Motilidade Gastrointestinal/fisiologia , Homeostase , Inflamação/imunologia , Mucosa Intestinal/imunologia , Intestino Delgado/metabolismo , Camundongos , Monócitos/metabolismo , Neurônios/metabolismo , Fagócitos/imunologia , Transcriptoma
4.
Immunity ; 56(5): 1027-1045.e8, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36791722

RESUMO

Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.


Assuntos
Macrófagos , Microglia , Camundongos , Animais , Microglia/metabolismo , Macrófagos/metabolismo , Integrases/genética , Integrases/metabolismo , Encéfalo/metabolismo
5.
Immunity ; 54(2): 259-275.e7, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33382972

RESUMO

The study of human macrophages and their ontogeny is an important unresolved issue. Here, we use a humanized mouse model expressing human cytokines to dissect the development of lung macrophages from human hematopoiesis in vivo. Human CD34+ hematopoietic stem and progenitor cells (HSPCs) generated three macrophage populations, occupying separate anatomical niches in the lung. Intravascular cell labeling, cell transplantation, and fate-mapping studies established that classical CD14+ blood monocytes derived from HSPCs migrated into lung tissue and gave rise to human interstitial and alveolar macrophages. In contrast, non-classical CD16+ blood monocytes preferentially generated macrophages resident in the lung vasculature (pulmonary intravascular macrophages). Finally, single-cell RNA sequencing defined intermediate differentiation stages in human lung macrophage development from blood monocytes. This study identifies distinct developmental pathways from circulating monocytes to lung macrophages and reveals how cellular origin contributes to human macrophage identity, diversity, and localization in vivo.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Antígenos CD34/metabolismo , Biodiversidade , Diferenciação Celular , Movimento Celular , Células Cultivadas , Sangue Fetal/citologia , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Pulmão/irrigação sanguínea , Receptores de IgG/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Nicho de Células-Tronco
6.
Immunity ; 50(6): 1425-1438.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31128962

RESUMO

The perinatal period is a critical window for distribution of innate tissue-resident immune cells within developing organs. Despite epidemiologic evidence implicating the early-life environment in the risk for allergy, temporally controlled lineage tracing of group 2 innate lymphoid cells (ILC2s) during this period remains unstudied. Using complementary fate-mapping approaches and reporters for ILC2 activation, we show that ILC2s appeared in multiple organs during late gestation like tissue macrophages, but, unlike the latter, a majority of peripheral ILC2 pools were generated de novo during the postnatal window. This period was accompanied by systemic ILC2 priming and acquisition of tissue-specific transcriptomes. Although perinatal ILC2s were variably replaced across tissues with age, the dramatic increases in tissue ILC2s following helminth infection were mediated through local expansion independent of de novo generation by bone marrow hematopoiesis. We provide comprehensive temporally controlled fate mapping of an innate lymphocyte subset with notable nuances as compared to tissue macrophage ontogeny.


Assuntos
Imunidade Inata , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Animais , Feminino , Marcação de Genes , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/imunologia , Gravidez , Locos de Características Quantitativas , Receptores de Interleucina-7/metabolismo , Transdução de Sinais
7.
Immunity ; 50(6): 1453-1466.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31053503

RESUMO

In lymph nodes, subcapsular sinus macrophages (SSMs) form an immunological barrier that monitors lymph drained from peripheral tissues. Upon infection, SSMs activate B and natural killer T (NKT) cells while secreting inflammatory mediators. Here, we investigated the mechanisms regulating development and homeostasis of SSMs. Embryonic SSMs originated from yolk sac hematopoiesis and were replaced by a postnatal wave of bone marrow (BM)-derived monocytes that proliferated to establish the adult SSM network. The SSM network self-maintained by proliferation with minimal BM contribution. Upon pathogen-induced transient deletion, BM-derived cells contributed to restoring the SSM network. Lymphatic endothelial cells (LECs) were the main source of CSF-1 within the lymph node and conditional deletion of Csf1 in adult LECs decreased the network of SSMs and medullary sinus macrophages (MSMs). Thus, SSMs have a dual hematopoietic origin, and LECs are essential to the niche supporting these macrophages.


Assuntos
Células Endoteliais/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Comunicação Celular , Diferenciação Celular , Expressão Gênica , Genes Reporter , Hematopoese/genética , Hematopoese/imunologia , Homeostase , Linfonodos/citologia , Linfonodos/imunologia , Vasos Linfáticos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Saco Vitelino
8.
Immunity ; 50(2): 462-476.e8, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30770246

RESUMO

Although the fetal immune system is considered tolerogenic, preterm infants can suffer from severe intestinal inflammation, including necrotizing enterocolitis (NEC). Here, we demonstrate that human fetal intestines predominantly contain tumor necrosis factor-α (TNF-α)+CD4+CD69+ T effector memory (Tem) cells. Single-cell RNA sequencing of fetal intestinal CD4+ T cells showed a T helper 1 phenotype and expression of genes mediating epithelial growth and cell cycling. Organoid co-cultures revealed a dose-dependent, TNF-α-mediated effect of fetal intestinal CD4+ T cells on intestinal stem cell (ISC) development, in which low T cell numbers supported epithelial development, whereas high numbers abrogated ISC proliferation. CD4+ Tem cell frequencies were higher in inflamed intestines from preterm infants with NEC than in healthy infant intestines and showed enhanced TNF signaling. These findings reveal a distinct population of TNF-α-producing CD4+ T cells that promote mucosal development in fetal intestines but can also mediate inflammation upon preterm birth.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Feto/imunologia , Memória Imunológica/imunologia , Intestinos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Feto/metabolismo , Humanos , Recém-Nascido , Mucosa Intestinal/embriologia , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/imunologia , Intestinos/embriologia , Intestinos/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Gravidez , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722217

RESUMO

Animal evolution is influenced by the emergence of new cell types, yet our understanding of this process remains elusive. This prompts the need for a broader exploration across diverse research organisms, facilitated by recent breakthroughs, such as gene editing tools and single-cell genomics. Essential to our understanding of cell type evolution is the accurate identification of homologous cells. We delve into the significance of considering developmental ontogeny and potential pitfalls when drawing conclusions about cell type homology. Additionally, we highlight recent discoveries in the study of cell type evolution through the application of single-cell transcriptomics and pinpoint areas ripe for further exploration.


Assuntos
Evolução Biológica , Análise de Célula Única , Animais , Análise de Célula Única/métodos , Humanos , Linhagem da Célula/genética , Transcriptoma/genética , Genômica , Edição de Genes
10.
Immunity ; 48(2): 364-379.e8, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466759

RESUMO

Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.


Assuntos
Células da Medula Óssea/fisiologia , Neutrófilos/fisiologia , Animais , Células da Medula Óssea/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais/imunologia , Neutrófilos/imunologia
11.
Immunity ; 49(4): 640-653.e5, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332630

RESUMO

Tissue-resident mast cells are associated with many inflammatory and physiological processes. Although mast cells arise from the yolk sac, the exact ontogeny of adult mast cells remains unclear. Here we have investigated the hematopoietic origin of mast cells using fate-mapping systems. We have shown that early erythro-myeloid progenitors (EMPs), late EMPs, and definitive hematopoietic stem cells (HSCs) each gave rise to mast cells in succession via an intermediate integrin ß7+ progenitor. From late embryogenesis to adult, early EMP-derived mast cells were largely replaced by late EMP-derived cells in most connective tissues except adipose and pleural cavity. Thus, mast cells with distinct origin displayed tissue-location preferences: early EMP-derived cells were limited to adipose and pleural cavity and late EMP-derived cells dominated most connective tissues, while HSC-derived cells were a main group in mucosa. Therefore, embryonic origin shapes the heterogeneity of adult mast cells, with diverse functions in immunity and development.


Assuntos
Células Eritroides/imunologia , Mastócitos/imunologia , Células Progenitoras Mieloides/imunologia , Animais , Linhagem da Célula/imunologia , Células Cultivadas , Tecido Conjuntivo/imunologia , Tecido Conjuntivo/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/imunologia , Células Eritroides/citologia , Células Eritroides/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Cadeias beta de Integrinas/imunologia , Cadeias beta de Integrinas/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos Transgênicos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(16): e2313440121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578985

RESUMO

Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.


Assuntos
Venenos de Crotalídeos , Serpentes Peçonhentas , Animais , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/metabolismo , Epigenômica , Crotalus/genética , Crotalus/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(12): e2306389121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437530

RESUMO

How animals refine migratory behavior over their lifetime (i.e., the ontogeny of migration) is an enduring question with important implications for predicting the adaptive capacity of migrants in a changing world. Yet, our inability to monitor the movements of individuals from early life onward has limited our understanding of the ontogeny of migration. The exploration-refinement hypothesis posits that learning shapes the ontogeny of migration in long-lived species, resulting in greater exploratory behavior early in life followed by more rapid and direct movement during later life. We test the exploration-refinement hypothesis by examining how white storks (Ciconia ciconia) balance energy, time, and information as they develop and refine migratory behavior during the first years of life. Here, we show that young birds reduce energy expenditure during flight while also increasing information gain by exploring new places during migration. As the birds age and gain more experience, older individuals stop exploring new places and instead move more quickly and directly, resulting in greater energy expenditure during migratory flight. During spring migration, individuals innovated novel shortcuts during the transition from early life into adulthood, suggesting a reliance on spatial memory acquired through learning. These incremental refinements in migratory behavior provide support for the importance of individual learning within a lifetime in the ontogeny of long-distance migration.


Assuntos
Metabolismo Energético , Comportamento Exploratório , Humanos , Animais , Movimento , Estações do Ano , Memória Espacial
14.
Immunol Rev ; 315(1): 154-170, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939073

RESUMO

Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.


Assuntos
Células-Tronco Pluripotentes , Adulto , Humanos , Diferenciação Celular , Células-Tronco Hematopoéticas , Células Matadoras Naturais , Hematopoese
15.
Immunol Rev ; 315(1): 126-153, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960621

RESUMO

The switch from primitive to definitive hematopoiesis occurs early in development through the emergence of a wave of definitive hematopoietic stem cells from intraembryonic sites, supplanting the original primitive population of extraembryonically derived stem cells. When it became clear that unique features of the fetal immune system could not be reproduced by adult stem cells, it was hypothesized that a lineage of definitive fetal hematopoietic stem cells predominates antenatally, ultimately giving way to an emerging wave of adult stem cells and resulting in a "layered" fetal immune system consisting of overlapping lineages. It is now clear, however, that the transition from human fetal-to-adult T cell identity and function does not occur due to a binary switch between distinct fetal and adult lineages. Rather, recent evidence from single cell analysis suggests that during the latter half of fetal development a gradual, progressive transition occurs at the level of hematopoietic stem-progenitor cells (HSPCs) which is reflected in their T cell progeny. At a transcriptional level, clusters of genes are up- and down-regulated with sequenced timing, suggesting that the transition is under the control of master regulatory factors, including epigenetic modifiers. The net effect is still one of "molecular layering," that is, the continuous layering of iterative generations of HSPCs and T cells that arise through progressive changes in gene expression. This review will focus on recent discoveries that elucidate mechanisms of fetal T cell function and the transition from fetal to adult identity. The epigenetic landscape of fetal T cells facilitates their ability to fulfill the dominant fetal mandate of generating tolerance against self, maternal, and environmental antigens by supporting their predisposition to differentiate into CD25+ FoxP3+ regulatory T cells (TRegs ). We will explore how the coordinated development of two complementary populations of fetal T cells-conventional T cells dominated by TRegs and tissue-associated memory effector cells with innate-like inflammatory potential-is crucial not only for maintaining intrauterine immune quiescence but also for facilitating an immune response that is appropriately tuned for the bombardment of antigen stimulation that happens at birth.


Assuntos
Células-Tronco Hematopoéticas , Fatores de Transcrição , Recém-Nascido , Humanos , Linhagem da Célula , Hematopoese/fisiologia
16.
Immunity ; 47(5): 974-989.e8, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166591

RESUMO

Innate and adaptive immune cells modulate heart failure pathogenesis during viral myocarditis, yet their identities and functions remain poorly defined. We utilized a combination of genetic fate mapping, parabiotic, transcriptional, and functional analyses and demonstrated that the heart contained two major conventional dendritic cell (cDC) subsets, CD103+ and CD11b+, which differentially relied on local proliferation and precursor recruitment to maintain their tissue residency. Following viral infection of the myocardium, cDCs accumulated in the heart coincident with monocyte infiltration and loss of resident reparative embryonic-derived cardiac macrophages. cDC depletion abrogated antigen-specific CD8+ T cell proliferative expansion, transforming subclinical cardiac injury to overt heart failure. These effects were mediated by CD103+ cDCs, which are dependent on the transcription factor BATF3 for their development. Collectively, our findings identified resident cardiac cDC subsets, defined their origins, and revealed an essential role for CD103+ cDCs in antigen-specific T cell responses during subclinical viral myocarditis.


Assuntos
Antígenos CD/análise , Infecções por Cardiovirus/complicações , Células Dendríticas/imunologia , Vírus da Encefalomiocardite , Insuficiência Cardíaca/prevenção & controle , Cadeias alfa de Integrinas/análise , Miocardite/complicações , Animais , Antígeno CD11b/análise , Linfócitos T CD8-Positivos/imunologia , Infecções por Cardiovirus/imunologia , Movimento Celular , Feminino , Hematopoese , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Receptores CCR2/fisiologia
17.
Immunity ; 47(2): 323-338.e6, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813661

RESUMO

Tumor-associated macrophages (TAMs) are essential components of the cancer microenvironment and play critical roles in the regulation of tumor progression. Optimal therapeutic intervention requires in-depth understanding of the sources that sustain macrophages in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originated from embryonic development and expanded through in situ proliferation during tumor progression. Whereas monocyte-derived TAMs played more potent roles in antigen presentation, embryonically derived TAMs exhibited a pro-fibrotic transcriptional profile, indicative of their role in producing and remodeling molecules in the extracellular matrix. Collectively, these findings uncover the heterogeneity of TAM origin and functions and could provide therapeutic insight for PDAC treatment.


Assuntos
Carcinogênese , Carcinoma Ductal/imunologia , Macrófagos/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/imunologia , Animais , Carcinoma Ductal/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Desenvolvimento Fetal , Fibrose , Hematopoese , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
18.
Immunity ; 47(4): 680-696.e8, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045900

RESUMO

The classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127- and CD127+ early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127- and CD127+ ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127- ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127+ ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis.


Assuntos
Linfócitos B/metabolismo , Células Matadoras Naturais/metabolismo , Células Progenitoras Linfoides/metabolismo , Linfopoese/genética , Linfócitos T/metabolismo , Adolescente , Adulto , Animais , Linfócitos B/citologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Células Matadoras Naturais/citologia , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/transplante , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Células-Tronco , Linfócitos T/citologia , Transplante Heterólogo , Adulto Jovem
19.
Immunity ; 46(5): 777-791.e10, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514685

RESUMO

Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(8): e2218183120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780530

RESUMO

Vertebrate Tas2r taste receptors detect bitter compounds that are potentially poisonous. Previous studies found substantial variation in the number of Tas2r genes across vertebrates, with some frog species carrying the largest number. Peculiar among vertebrates, frogs undergo metamorphosis, often associated with a dietary shift between tadpoles and adults. A possible explanation for the large size of frog Tas2r families could be that distinct sets of Tas2r genes are required for tadpoles and adults, suggesting differential expression of Tas2r genes between tadpoles and adults. To test this hypothesis, we first examined 20 amphibian genomes and found that amphibians generally possess more Tas2r genes than do other vertebrate clades. We next focused on the American bullfrog (Lithobates catesbeianus) to examine the expression of its Tas2r genes in herbivorous tadpoles and insectivorous adult frogs. We report that close to one fifth of its 180 Tas2r genes are differentially expressed (22 genes enriched in adults and 11 in tadpoles). Tuning properties were determined for a subset of differentially expressed genes by a cell-based functional assay, with the adult-enriched Tas2r gene set covering a larger range of ligands compared to the tadpole-enriched subset. These results suggest a role of Tas2r genes in the ontogenetic dietary shift of frogs and potentially initiate a new avenue of ontogenetic analysis of diet-related genes in the animal kingdom.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Animais , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Filogenia , Evolução Molecular , Anuros/genética , Anuros/metabolismo , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA