Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant J ; 116(2): 416-431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421313

RESUMO

Orchid mycorrhiza (OM) represents an unusual symbiosis between plants and fungi because in all orchid species carbon is provided to the host plant by the mycorrhizal fungus at least during the early stages of orchid development, named a protocorm. In addition to carbon, orchid mycorrhizal fungi provide the host plant with essential nutrients such as phosphorus and nitrogen. In mycorrhizal protocorms, nutrients transfer occurs in plant cells colonized by the intracellular fungal coils, or pelotons. Whereas the transfer of these vital nutrients to the orchid protocorm in the OM symbiosis has been already investigated, there is currently no information on the transfer of sulfur (S). Here, we used ultra-high spatial resolution secondary ion mass spectrometry (SIMS) as well as targeted gene expression studies and laser microdissection to decipher S metabolism and transfer in the model system formed by the Mediterranean orchid Serapias vomeracea and the mycorrhizal fungus Tulasnella calospora. We revealed that the fungal partner is actively involved in S supply to the host plant, and expression of plant and fungal genes involved in S uptake and metabolism, both in the symbiotic and asymbiotic partners, suggest that S transfer most likely occurs as reduced organic forms. Thus, this study provides original information about the regulation of S metabolism in OM protocorms, adding a piece of the puzzle on the nutritional framework in OM symbiosis.

2.
New Phytol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929750

RESUMO

Quantifying the abundances of fungi is key to understanding natural variation in mycorrhizal communities in relation to plant ecophysiology and environmental heterogeneity. High-throughput metabarcoding approaches have transformed our ability to characterize and compare complex mycorrhizal communities. However, it remains unclear how well metabarcoding read counts correlate with actual read abundances in the sample, potentially limiting their use as a proxy for species abundances. Here, we use droplet digital PCR (ddPCR) to evaluate the reliability of ITS2 metabarcoding data for quantitative assessments of mycorrhizal communities in the orchid species Neottia ovata sampled at multiple sites. We performed specific ddPCR assays for eight families of orchid mycorrhizal fungi and compared the results with read counts obtained from metabarcoding. Our results demonstrate a significant correlation between DNA copy numbers measured by ddPCR assays and metabarcoding read counts of major mycorrhizal partners of N. ovata, highlighting the usefulness of metabarcoding for quantifying the abundance of orchid mycorrhizal fungi. Yet, the levels of correlation between the two methods and the numbers of false zero values varied across fungal families, which warrants cautious evaluation of the reliability of low-abundance families. This study underscores the potential of metabarcoding data for more quantitative analyses of mycorrhizal communities and presents practical workflows for metabarcoding and ddPCR to achieve a more comprehensive understanding of orchid mycorrhizal communities.

3.
New Phytol ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884478

RESUMO

Arbuscular (AM) and orchid (OrM) mycorrhiza are the most widespread mycorrhizal symbioses among flowering plants, formed by distinct fungal and plant species. They are both endosymbioses because the fungal hyphae can enter inside the plant cell to develop intracellular fungal structures that are surrounded by the plant membrane. The symbiotic plant-fungus interface is considered to be the major site of nutrient transfer to the host plant. We summarize recent data on nutrient transfer in OrM and compare the development and function of the arbuscules formed in AM and the pelotons formed in OrM in order to outline differences and conserved traits. We further describe the unexpected similarities in the form and function of the intracellular mycorrhizal fungal structures observed in orchids and in the roots of mycoheterotrophic plants forming AM. We speculate that these similarities may be the result of convergent evolution of mycorrhizal types in mycoheterotrophic plants and highlight knowledge gaps and new research directions to explore this scenario.

4.
New Phytol ; 231(2): 791-800, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932029

RESUMO

Mycorrhizal fungi are central to the biology of land plants. However, to what extent mycorrhizal shifts - broad evolutionary transitions in root-associated fungal symbionts - are related to changes in plant trophic modes remains poorly understood. We built a comprehensive DNA dataset of Orchidaceae fungal symbionts and a dated plant molecular phylogeny to test the hypothesis that shifts in orchid trophic modes follow a stepwise pattern, from autotrophy over partial mycoheterotrophy (mixotrophy) to full mycoheterotrophy, and that these shifts are accompanied by switches in fungal symbionts. We estimate that at least 17 independent shifts from autotrophy towards full mycoheterotrophy occurred in orchids, mostly through an intermediate state of partial mycoheterotrophy. A wide range of fungal partners was inferred to occur in the roots of the common ancestor of this family, including 'rhizoctonias', ectomycorrhizal, and wood- or litter-decaying saprotrophic fungi. Phylogenetic hypothesis tests further show that associations with ectomycorrhizal or saprotrophic fungi were most likely a prerequisite for evolutionary shifts towards full mycoheterotrophy. We show that shifts in trophic mode often coincided with switches in fungal symbionts, suggesting that the loss of photosynthesis selects for different fungal communities in orchids. We conclude that changes in symbiotic associations and ecophysiological traits are tightly correlated throughout the diversification of orchids.


Assuntos
Micorrizas , Orchidaceae , Evolução Biológica , Filogenia , Simbiose
5.
J Appl Microbiol ; 131(1): 413-424, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33320986

RESUMO

AIMS: The aim of this study was to assess the effects of beneficial micro-organisms on the growth, nutrient accumulation and root-associated fungal species composition of pot orchids grown in the greenhouse. METHODS AND RESULTS: A greenhouse pot experiment was conducted to investigate the beneficial effects of a mycorrhizal fungus, Epulorhiza repens isolate ML01, an endophytic fungus, Umbelopsis nana isolate ZH3A-3 and a mixed commercial inoculum Rem, alone or in combination. Nested PCR assays showed that both isolates ML01 and ZH3A-3 can successfully establish in inoculated soil. All the inoculants significantly increased the plant total dry weight of Cymbidium hybridum 'Golden Boy', whereas only co-inoculation with the endophytic fungus ZH3A-3 and the Rem enhanced the fresh weight and height of host plants. The mycorrhizal fungus positively affected P, K, Ca, Mg content in shoots and Zn content in roots, while the endophytic fungus improved N, P, Ca accumulation in shoots and roots. Co-inoculation with the Rem and ML01 improved root to shoot translocation of Fe and Zn. In addition, inoculation with ZH3A-3, ML01+Rem and ZH3A-3+Rem decreased the relative frequency of Fusarium sp. on orchid roots. Trichoderma sp. were isolated from the roots treated with ML01, ML01+Rem and ZH3A-3+Rem. CONCLUSIONS: Both mycorrhizal and endophytic fungi had the potential to create favourable microflora in the orchid roots and stimulate the growth of transplanted plantlets under greenhouse condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The newly isolated endophytic strain ZH3A-3 showed significant application value in orchid production.


Assuntos
Inoculantes Agrícolas/fisiologia , Micobioma , Micorrizas/fisiologia , Nutrientes/metabolismo , Orchidaceae/microbiologia , Basidiomycota/fisiologia , Endófitos/fisiologia , Fungos/fisiologia , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo
6.
Mycorrhiza ; 31(2): 231-241, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492496

RESUMO

Many orchid species are threatened, while some disappear from their natural habitats without obvious reasons. Eutrophication has been suggested as a possible factor and nitrate, which is able to suppress non-symbiotic orchid seed germination even at very low concentrations, and could pose a serious threat for natural orchid populations. Early ontogenesis of all orchids entirely depends on orchid mycorrhizal symbiosis, and at this initial mycoheterotrophic stage, many terrestrial green orchids associate with polyphyletic fungal symbionts (i.e., mycobionts), collectively called "rhizoctonias." We asked whether these fungi might also have some non-nutritional roles, i.e., whether they might confer resistance to eutrophication. To test this hypothesis, we co-cultivated seeds of the terrestrial orchid Dactylorhiza majalis with five rhizoctonias (two Tulasnella, two Ceratobasidium and one Serendipita isolate) at various ecologically meaningful nitrate concentrations (0 to 100 mg/L). With the exception of one Tulasnella isolate, all mycobionts supported the growth of protocorms and formed orchid mycorrhiza, i.e., intracellular hyphal pelotons, in the protocorms. Nitrate suppressed asymbiotic, as well as symbiotic, seed germination in all but one fungal treatment; the seeds co-cultivated with one of the Ceratobasidium isolates were indeed insensitive to nitrate. We conclude that nitrates also negatively affect symbiotic orchid germination, depending on the available compatible mycobionts. Thus, eutrophication with nitrate may decrease the number of orchid mycobionts capable of supporting seed germination.


Assuntos
Micorrizas , Orchidaceae , Germinação , Nitratos , Sementes , Simbiose
7.
BMC Microbiol ; 20(1): 236, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746782

RESUMO

BACKGROUND: Achlorophyllous orchids are mycoheterotrophic plants, which lack photosynthetic ability and associate with fungi to acquire carbon from different environmental sources. In tropical latitudes, achlorophyllous forest orchids show a preference to establish mycorrhizal relationships with saprotrophic fungi. However, a few of them have been recently found to associate with ectomycorrhizal fungi and there is still much to be learned about the identity of fungi associated with tropical orchids. The present study focused on mycorrhizal diversity in the achlorophyllous orchid C. inverta, an endangered species, which is endemic to southern China. The aim of this work was to identify the main mycorrhizal partners of C. inverta in different plant life stages, by means of morphological and molecular methods. RESULTS: Microscopy showed that the roots of analysed C. inverta samples were extensively colonized by fungal hyphae forming pelotons in root cortical cells. Fungal ITS regions were amplified by polymerase chain reaction, from DNA extracted from fungal mycelia isolated from orchid root samples, as well as from total root DNA. Molecular sequencing and phylogenetic analyses showed that the investigated orchid primarily associated with ectomycorrhizal fungi belonging to a narrow clade within the family Ceratobasidiaceae, which was previously detected in a few fully mycoheterotrophic orchids and was also found to show ectomycorrhizal capability on trees and shrubs. Russulaceae fungal symbionts, showing high similarity with members of the ectomycorrhizal genus Russula, were also identified from the roots of C. inverta, at young seedling stage. Ascomycetous fungi including Chaetomium, Diaporthe, Leptodontidium, and Phomopsis genera, and zygomycetes in the genus Mortierella were obtained from orchid root isolated strains with unclear functional role. CONCLUSIONS: This study represents the first assessment of root fungal diversity in the rare, cryptic and narrowly distributed Chinese orchid C. inverta. Our results provide new insights on the spectrum of orchid-fungus symbiosis suggesting an unprecedented mixed association between the studied achlorophyllous forest orchid and ectomycorrhizal fungi belonging to Ceratobasidiaceae and Russulaceae. Ceratobasidioid fungi as dominant associates in the roots of C. inverta represent a new record of the rare association between the identified fungal group and fully mycoheterotrophic orchids in nature.


Assuntos
Basidiomycota/isolamento & purificação , Micorrizas/isolamento & purificação , Orchidaceae/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Basidiomycota/classificação , Basidiomycota/genética , China , DNA Fúngico/genética , Espécies em Perigo de Extinção , Hifas/classificação , Hifas/genética , Micorrizas/classificação , Micorrizas/genética , Filogenia , Raízes de Plantas/microbiologia , Plântula/microbiologia , Simbiose
8.
New Phytol ; 228(6): 1939-1952, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32668507

RESUMO

All orchids rely on mycorrhizal fungi for organic carbon, at least during early development. In fact, orchid seed germination leads to the formation of a protocorm, a heterotrophic postembryonic structure colonized by intracellular fungal coils, thought to be the site of nutrient transfer. The molecular mechanisms underlying mycorrhizal interactions and metabolic changes induced by this symbiosis in both partners remain mostly unknown. We studied plant-fungus interactions in the mycorrhizal association between the Mediterranean orchid Serapias vomeracea and the basidiomycete Tulasnella calospora using nontargeted metabolomics. Plant and fungal metabolomes obtained from symbiotic structures were compared with those obtained under asymbiotic conditions. Symbiosis induced substantial metabolomic alterations in both partners. In particular, structural and signaling lipid compounds increased markedly in the external fungal mycelium growing near the symbiotic protocorms, whereas chito-oligosaccharides were identified uniquely in symbiotic protocorms. This work represents the first description of metabolic changes occurring in orchid mycorrhiza. These results - combined with previous transcriptomic data - provide novel insights on the mechanisms underlying the orchid mycorrhizal association and open intriguing questions on the role of fungal lipids in this symbiosis.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Regulação da Expressão Gênica de Plantas , Metabolômica , Filogenia , Simbiose
9.
New Phytol ; 227(3): 955-966, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239516

RESUMO

Testing of ecological, biogeographical and phylogenetic hypotheses of mycorrhizal traits requires a comprehensive reference dataset about plant mycorrhizal associations. Here we present a database, FungalRoot, which summarizes publicly available data about vascular plant mycorrhizal type and intensity of root colonization by mycorrhizal fungi, accompanied with rich metadata. We compiled and digitized data about plant mycorrhizal colonization in nine widespread languages. The present version of the FungalRoot database contains 36 303 species-by-site observations for 14 870 plant species, tripling the previously available compiled information about plant mycorrhizal associations. Based on these data, we provide a recommended list of genus-level plant mycorrhizal associations, based on the majority of data for species and careful analysis of conflicting data. The majority of ectomycorrhizal and ericoid mycorrhizal plants are trees (92%) and shrubs (85%), respectively. The majority of arbuscular and nonmycorrhizal plant species are herbaceous (50% and 70%, respectively). Our publicly available database is a powerful resource for mycorrhizal scientists and ecologists. It features possibilities for dynamic updating and addition of data about plant mycorrhizal associations. The new database will promote research on plant and fungal biogeography and evolution, and on links between above- and belowground biodiversity and ecosystem functioning.


Assuntos
Micorrizas , Biodiversidade , Ecossistema , Filogenia , Raízes de Plantas , Plantas
10.
Mycorrhiza ; 30(2-3): 221-228, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146514

RESUMO

Interactions with mycorrhizal fungi have been increasingly recognized as one of the most important ecological factors determining the distribution and local abundance of orchids. While some orchid species may interact with a variety of fungal associates, others are more specific in their choice of mycorrhizal partners. Moreover, orchids that co-occur at a given site, often associate with different partners, possibly to avoid competition and to allow stable coexistence. However, whether differences in mycorrhizal partners directly affect seed germination and subsequent protocorm formation remains largely unknown. In this research, we used in vitro germination experiments to investigate to what extent seed germination and protocorm formation of Gymnadenia conopsea was affected by the origin and identity of fungal associates. Fungi were isolated from G. conopsea and three other co-occurring orchid species (Dactylorhiza viridis (Coeloglossum viride), Herminium monorchis, and Platanthera chlorantha). In total, eight fungal associates, belonging to Tulasnellaceae, Ceratobasidiaceae, and Serendipitaceae, were successfully isolated and cultured. While all eight fungal strains were able to promote early germination of G. conopsea seeds, only fungal strain GS2, a member of the Ceratobasidiaceae isolated from G. conopsea itself, was able to promote protocorm formation and subsequent growth to a seedling. Two other fungal strains isolated from G. conopsea only supported seed germination until the protocorm formation stage. The other five fungal strains isolated from the co-occurring orchid species did not support seed germination beyond the protocorm stage. We conclude that, although G. conopsea is considered a mycorrhizal generalist that associates with a wide range of fungi during its adult life, it requires specific fungi to promote protocorm formation and growth to a seedling.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Germinação , Sementes , Simbiose
11.
Int J Mol Sci ; 21(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365577

RESUMO

Photosynthetic orchids associate with mycorrhizal fungi that can be mostly ascribed to the "rhizoctonia" species complex. Rhizoctonias' phylogenetic diversity covers a variety of ecological/nutritional strategies that include, beside the symbiosis establishment with host plants, endophytic and pathogenic associations with non-orchid plants or saprotrophic soil colonization. In addition, orchid mycorrhizal fungi (OMF) that establish a symbiotic relationship with an orchid host can later proliferate in browning and rotting orchid tissues. Environmental triggers and molecular mechanisms governing the switch leading to either a saprotrophic or a mycorrhizal behavior in OMF remain unclear. As the sequenced OMF genomes feature a wide range of genes putatively involved in the degradation of plant cell wall (PCW) components, we tested if these transitions may be correlated with a change in the expression of some PCW degrading enzymes. Regulation of several genes encoding PCW degrading enzymes was evaluated during saprotrophic growth of the OMF Tulasnella calospora on different substrates and under successful and unsuccessful mycorrhizal symbioses. Fungal gene expression in planta was investigated in two orchid species, the terrestrial Mediterranean Serapias vomeracea and the epiphytic tropical Cattleya purpurata. Although we only tested a subset of the CAZyme genes identified in the T. calospora genome, and we cannot exclude therefore a role for different CAZyme families or members inside a family, the results showed that the degradative potential of T. calospora is finely regulated during saprotrophic growth and in symbiosis, often with a different regulation in the two orchid species. These data pose novel questions about the role of fungal PCW degrading enzymes in the development of unsuccessful and successful interactions.


Assuntos
Basidiomycota , Orchidaceae/microbiologia , Orchidaceae/fisiologia , Simbiose , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Micorrizas , Sementes
12.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854186

RESUMO

Seeds of almost all orchids depend on mycorrhizal fungi to induce their germination in the wild. The regulation of this symbiotic germination of orchid seeds involves complex crosstalk interactions between mycorrhizal establishment and the germination process. The aim of this study was to investigate the effect of gibberellins (GAs) on the symbiotic germination of Dendrobium officinale seeds and its functioning in the mutualistic interaction between orchid species and their mycobionts. To do this, we used liquid chromatograph-mass spectrometer to quantify endogenous hormones across different development stages between symbiotic and asymbiotic germination of D. officinale, as well as real-time quantitative PCR to investigate gene expression levels during seed germination under the different treatment concentrations of exogenous gibberellic acids (GA3). Our results showed that the level of endogenous GA3 was not significantly different between the asymbiotic and symbiotic germination groups, but the ratio of GA3 and abscisic acids (ABA) was significantly higher during symbiotic germination than asymbiotic germination. Exogenous GA3 treatment showed that a high concentration of GA3 could inhibit fungal colonization in the embryo cell and decrease the seed germination rate, but did not significantly affect asymbiotic germination or the growth of the free-living fungal mycelium. The expression of genes involved in the common symbiotic pathway (e.g., calcium-binding protein and calcium-dependent protein kinase) responded to the changed concentrations of exogenous GA3. Taken together, our results demonstrate that GA3 is probably a key signal molecule for crosstalk between the seed germination pathway and mycorrhiza symbiosis during the orchid seed symbiotic germination.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Giberelinas/farmacologia , Orchidaceae/fisiologia , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Basidiomycota/efeitos dos fármacos , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação , Giberelinas/metabolismo , Espectrometria de Massas , Micorrizas/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Orchidaceae/microbiologia , Sementes/microbiologia , Sementes/fisiologia , Análise de Sequência de RNA , Simbiose
13.
Mycorrhiza ; 28(7): 651-663, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30094512

RESUMO

The adaptation and performance of orchid mycorrhizae in heavy metal-polluted soils have been poorly explored. In the present study, proteomic and metabolic approaches were used to detect physiological changes in orchid roots established in a heavy metal-polluted soil and to ascertain whether mycorrhizal fungi affect the metabolic responses of roots. Young Bipinnula fimbriata plantlets were established in control and heavy metal-polluted soils in a greenhouse. After 14 months, exudation of root organic acids, phenolics, percentage of mycorrhization, mineral content, and differential protein accumulation were measured. More root biomass, higher root colonization, and higher exudation rates of citrate, succinate, and malate were detected in roots growing in heavy metal-polluted soils. Higher accumulation of phosphorus and heavy metals was found inside mycorrhizal roots under metal stress. Under non-contaminated conditions, non-mycorrhizal root segments showed enhanced accumulation of proteins related to carbon metabolism and stress, whereas mycorrhizal root segments stimulated protein synthesis related to pathogen control, cytoskeleton modification, and sucrose metabolism. Under heavy metal stress, the proteome profile of non-mycorrhizal root segments indicates a lower induction of defense mechanisms, which, together with the stimulation of enzymes related to carotenoid biosynthesis and cell wall organization, may positively influence mycorrhizal fungi colonization. The results point to different metabolic strategies in mycorrhizal and non-mycorrhizal root segments that are exposed to heavy metal stress. The results indicate that root colonization by mycorrhizal fungi is stimulated to alleviate the negative effects of heavy metals in the orchids.


Assuntos
Metais Pesados/metabolismo , Micorrizas/fisiologia , Orchidaceae/microbiologia , Orchidaceae/fisiologia , Poluentes do Solo/metabolismo , Adaptação Fisiológica , Chile , Orchidaceae/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteoma , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/fisiologia
14.
New Phytol ; 213(1): 365-379, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859287

RESUMO

Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.


Assuntos
Basidiomycota/genética , Genes de Plantas , Micorrizas/genética , Nitrogênio/metabolismo , Orchidaceae/genética , Orchidaceae/microbiologia , Simbiose/genética , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Biomassa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Fúngicos , Teste de Complementação Genética , Mutação/genética , Micorrizas/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Nitrogênio/farmacologia , Orchidaceae/efeitos dos fármacos , Filogenia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Simbiose/efeitos dos fármacos
15.
Mycorrhiza ; 27(3): 175-188, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27796595

RESUMO

Little is known about Orchidaceae plants in Chile and their mycorrhizal associations, a key issue for designing protective actions for endangered species. We investigated root fungi from seven terrestrial orchid species to identify potential mycorrhizal fungi. The main characteristics of Rhizoctonia-like fungi were observed under light microscopy, and isolates were identified through PCR-ITS sequencing. Molecular identification of fungal sequences showed a high diversity of fungi colonizing roots. Fungal ability to germinate seeds of different orchids was determined in symbiotic germination tests; 24 fungal groups were isolated, belonging to the genera Tulasnella, Ceratobasidium, and Thanatephorus. Furthermore, dark septate and other endophytic fungi were identified. The high number of Rhizoctonia-like fungi obtained from adult orchids from the Coastal mountain range suggests that, after germination, these orchids may complement their nutritional demands through mycoheterotrophy. Nonetheless, beneficial associations with other endophytic fungi may also co-exist. In this study, isolated mycorrhizal fungi had the ability to induce seed germination at different efficiencies and with low specificity. Germin ation rates were low, but protocorms continued to develop for 60 days. A Tulasnella sp. isolated from Chloraea gavilu was most effective to induce seed germination of different species. The dark septate endophytic (DSE) fungi did not show any effect on seed development; however, their widespread occurrence in some orchids suggests a putative role in plant establishment.


Assuntos
Micorrizas/classificação , Micorrizas/isolamento & purificação , Orchidaceae/microbiologia , Sementes/crescimento & desenvolvimento , Chile , DNA Fúngico/análise , Espécies em Perigo de Extinção , Germinação , Micorrizas/genética , Orchidaceae/crescimento & desenvolvimento , Filogenia , Raízes de Plantas/microbiologia , Sementes/microbiologia , Análise de Sequência de DNA , Simbiose
16.
Mycorrhiza ; 27(4): 355-367, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28039600

RESUMO

Orchid mycorrhizal (OrM) fungi play a crucial role in the ontogeny of orchids, yet little is known about how the structure of OrM fungal communities varies with space and environmental factors. Previous studies suggest that within orchid patches, the distance to adult orchids may affect the abundance of OrM fungi. Many orchid species grow in species-rich temperate semi-natural grasslands, the persistence of which depends on moderate physical disturbances, such as grazing and mowing. The aim of this study was to test whether the diversity, structure and composition of OrM fungal community are influenced by the orchid patches and management intensity in semi-natural grasslands. We detected putative OrM fungi from 0 to 32 m away from the patches of host orchid species (Orchis militaris and Platanthera chlorantha) in 21 semi-natural calcareous grasslands using pyrosequencing. In addition, we assessed different ecological conditions in semi-natural grasslands but primarily focused on the effect of grazing intensity on OrM fungal communities in soil. We found that investigated orchid species were mostly associated with Ceratobasidiaceae and Tulasnellaceae and, to a lesser extent, with Sebacinales. Of all the examined factors, the intensity of grazing explained the largest proportion of variation in OrM fungal as well as total fungal community composition in soil. Spatial analyses showed limited evidence for spatial clustering of OrM fungi and their dependence on host orchids. Our results indicate that habitat management can shape OrM fungal communities, and the spatial distribution of these fungi appears to be weakly structured outside the orchid patches.


Assuntos
Pradaria , Micorrizas/classificação , Orchidaceae/microbiologia , Microbiologia do Solo , Basidiomycota , Estônia , Filogenia
17.
Ann Bot ; 118(1): 149-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27311572

RESUMO

BACKGROUND AND AIMS: Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. METHODS: For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. KEY RESULTS: Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata CONCLUSIONS: The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses.


Assuntos
Micorrizas/fisiologia , Orchidaceae/microbiologia , Microbiologia do Solo , Solo/química , Chile , Ecossistema , Micorrizas/genética , Nitrogênio/análise , Fósforo/análise , Filogenia
18.
Mycorrhiza ; 26(5): 353-65, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26732875

RESUMO

Orchidaceae establish symbiotic relationships with fungi in the Rhizoctonia group, resulting in interactions beneficial to both organisms or in cell destruction in one of them (pathogenicity). Previous studies have focused mostly on terrestrial species with a few, preliminary studies, on epiphytes. To further our understanding of the molecular mechanisms involved in these symbioses, we evaluated the interaction between Oncidium sphacelatum Lindl. and the mycorrhizal fungus Thanatephorus sp. strain RG26 (isolated from a different orchid species) in vitro using morphometric and proteomic analyses. Evidence from the morphometric and microscopic analysis showed that the fungus promoted linear growth and differentiation of orchid protocorms during 98 days interaction. On day 63, protocorm development was evident, so we analyzed the physiological response of both organisms at that moment. Proteome results suggest that orchid development stimulated by the fungus apparently involves cell cycle proteins, purine recycling, ribosome biogenesis, energy metabolism, and secretion that were up-regulated in the orchid; whereas in the fungus, a high expression of proteins implicated in stress response, protein-protein interaction, and saccharides and protein biosynthesis were found in the symbiotic interaction. This is the first work reporting proteins differentially expressed in the epiphytic orchid-fungus interaction and will contribute to the search for molecular markers that will facilitate the study of this symbiosis in both wild orchids and those in danger of extinction.


Assuntos
Basidiomycota/fisiologia , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/microbiologia , Basidiomycota/classificação , Basidiomycota/genética , Biomarcadores , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Orchidaceae/ultraestrutura , Filogenia , Proteômica , Simbiose
19.
New Phytol ; 205(3): 1308-1319, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25382295

RESUMO

Many adult orchids, especially photoautotrophic species, associate with a diverse range of mycorrhizal fungi, but little is known about the temporal changes that might occur in the diversity and functioning of orchid mycorrhiza during vegetative and reproductive plant growth. Temporal variations in the spectrum of mycorrhizal fungi and in stable isotope natural abundance were investigated in adult plants of Anacamptis morio, a wintergreen meadow orchid. Anacamptis morio associated with mycorrhizal fungi belonging to Tulasnella, Ceratobasidium and a clade of Pezizaceae (Ascomycetes). When a complete growing season was investigated, multivariate analyses indicated significant differences in the mycorrhizal fungal community. Among fungi identified from manually isolated pelotons, Tulasnella was more common in autumn and winter, the pezizacean clade was very frequent in spring, and Ceratobasidium was more frequent in summer. By contrast, relatively small variations were found in carbon (C) and nitrogen (N) stable isotope natural abundance, A. morio samples showing similar (15)N enrichment and (13)C depletion at the different sampling times. These observations suggest that, irrespective of differences in the seasonal environmental conditions, the plant phenological stages and the associated fungi, the isotopic content in mycorrhizal A. morio remains fairly constant over time.


Assuntos
Biodiversidade , Pradaria , Micorrizas/fisiologia , Orchidaceae/microbiologia , Processos Autotróficos , Teorema de Bayes , Isótopos de Carbono , Dados de Sequência Molecular , Isótopos de Nitrogênio , Filogenia , Folhas de Planta/metabolismo , Simbiose , Fatores de Tempo
20.
Mol Ecol ; 24(5): 1122-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25612936

RESUMO

Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural (13)C and (15)N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and (13)C and (15)N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia-associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus-avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia-associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre-adaptation to mycoheterotrophy in the whole Neottieae.


Assuntos
Basidiomycota/classificação , Micorrizas/classificação , Orchidaceae/genética , Orchidaceae/microbiologia , Isótopos de Carbono/análise , Código de Barras de DNA Taxonômico , Ecossistema , Europa (Continente) , Dados de Sequência Molecular , Isótopos de Nitrogênio/análise , Filogenia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA