Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39495024

RESUMO

Incretins, such as glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), have advanced the treatment landscape of obesity to a new pinnacle. As opposed to singular incretin effects, oxyntomodulin (OXM) activates glucagon receptors (GCGR) and glucagon-like peptide-1 receptors (GLP1R), demonstrating a more dynamic range of effects that are more likely to align with evolving 'health gains' goals in obesity care. Here, we will review the molecular insights from their inception to recent developments and challenges. This review will discuss the physiological actions of OXM, primarily appetite regulation, energy expenditure, and glucose homeostasis. Finally, we will shed light on the development of OXM-based therapies for obesity and associated complications, and outline important considerations for more translational efforts.

2.
Mol Cell Neurosci ; 126: 103873, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295578

RESUMO

A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Proglucagon , Transdução de Sinais , Animais , Ratos , Hipotálamo/fisiologia , Proglucagon/metabolismo , Ratos Sprague-Dawley , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo , Sinapses , Fibras Nervosas/metabolismo , Eletrofisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resposta de Saciedade , Comportamento Alimentar
3.
J Physiol ; 601(5): 979-1016, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36661095

RESUMO

The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.


Assuntos
Corpos Geniculados , Grelina , Colecistocinina/metabolismo , Ritmo Circadiano/fisiologia , Sinais (Psicologia) , Dieta Hiperlipídica , Corpos Geniculados/fisiologia , Grelina/metabolismo , Orexinas/metabolismo , Oxintomodulina/metabolismo , Peptídeo YY/metabolismo , Núcleo Supraquiasmático/metabolismo
4.
Diabetes Obes Metab ; 25(9): 2561-2574, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37246799

RESUMO

AIM: To investigate the changes of circulating levels of all proglucagon-derived peptides (PGDPs) in individuals with overweight or obesity receiving liraglutide (3 mg) or naltrexone/bupropion (32/360 mg), and to explore the association between induced changes in postprandial PGDP levels and body composition, as well as metabolic variables, after 3 and 6 months on treatment. MATERIALS AND METHODS: Seventeen patients with obesity or with overweight and co-morbidities, but without diabetes, were assigned to receive once-daily oral naltrexone/bupropion 32/360 mg (n = 8) or once-daily subcutaneous liraglutide 3 mg (n = 9). Participants were assessed before treatment initiation and after 3 and 6 months on treatment. At the baseline and 3-month visits, participants underwent a 3-hour mixed meal tolerance test to measure fasting and postprandial levels of PGDPs, C-peptide, hunger and satiety. Clinical and biochemical indices of metabolic function, magnetic resonance-assessed liver steatosis and ultrasound-assessed liver stiffness were measured at each visit. RESULTS: Both medications improved body weight and composition, carbohydrate and lipid metabolism, and liver fat and function. Naltrexone/bupropion produced a weight-independent increase in the levels of proglucagon (P < .001) and decreases in glucagon-like peptide-2 (GLP-2), glucagon and the major proglucagon fragment (P ≤ .01), whereas liraglutide markedly upregulated total glucagon-like peptide-1 (GLP-1) levels in a weight-independent manner (P = .04), and similarly downregulated the major proglucagon fragment, GLP-2 and glucagon (P < .01). PGDP levels at the 3-month visit were positively and independently correlated with improvements in fat mass, glycaemia, lipaemia and liver function, and negatively with reductions in fat-free mass, at both the 3- and 6-month visits. CONCLUSIONS: PGDP levels in response to liraglutide and naltrexone/bupropion are associated with improvements in metabolism. Our study provides support for the administration of the downregulated members of the PGDP family as replacement therapy (e.g. glucagon), in addition to the medications currently in use that induced their downregulation (e.g. GLP-1), and future studies should explore whether the addition of other PGDPs (e.g. GLP-2) could offer additional benefits.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Humanos , Proglucagon , Glucagon/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Bupropiona/uso terapêutico , Naltrexona/uso terapêutico , Sobrepeso , Peptídeos/farmacologia , Redução de Peso , Peptídeo 2 Semelhante ao Glucagon , Obesidade/tratamento farmacológico , Peptídeos Semelhantes ao Glucagon/farmacologia
5.
Scand J Clin Lab Invest ; 82(1): 75-83, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935574

RESUMO

Glucagon is a key regulator of metabolism and is used in the diagnostic of neuroendocrine tumors. Accurate measurement of glucagon requires both extreme sensitivity and specificity since several peptides are derived from the same proglucagon precursor encoding part of the glucagon sequence and given that glucagon circulates in picomolar concentrations. A sandwich ELISA was recently developed and extensively evaluated; however, this method may not be accurate when measuring glucagon in patients with an enhanced production of proglucagon-derived peptides as seen after Roux-en-Y gastric bypass (RYGB). To overcome this, a modified version of the ELISA was developed. In this study, we evaluate an unmodified and a modified version of the ELISA in healthy individuals, individuals with obesity, and finally in two cohorts of patients following RYGB surgery using different nutrient stimuli to assess glucagon dynamics. Finally, in vitro spike-in recoveries using native glucagon and proglucagon-derived peptides were performed in buffer and in plasma. Our data support that both versions of the ELISA accurately capture endogenous and exogenous glucagon in healthy individuals and in individuals with obesity. However, the unmodified version of the assay may overestimate glucagon levels in patients following RYGB in line with minimal but consistent cross-reactivity to oxyntomodulin and glicentin that both are 50-fold increased after RYGB. Importantly, we did not find any changes between the two protocols at fasted conditions and therefore diagnostics of glucagonomas is not affected by the choice of assay procedure nor the surgical history of the patient (RYGB).


Assuntos
Derivação Gástrica , Glicemia/análise , Ensaio de Imunoadsorção Enzimática , Derivação Gástrica/métodos , Glucagon/metabolismo , Humanos , Obesidade/cirurgia , Proglucagon
6.
Adv Exp Med Biol ; 1307: 273-297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32016913

RESUMO

The physiological roles of the enteroendocrine system in relation to energy and glucose homeostasis regulation have been extensively studied in the past few decades. Considerable advances were made that enabled to disclose the potential use of gastro-intestinal (GI) hormones to target obesity and type 2 diabetes (T2D). The recognition of the clinical relevance of these discoveries has led the pharmaceutical industry to design several hormone analogues to either to mitigate physiological defects or target pharmacologically T2D.Amongst several advances, a major breakthrough in the field was the unexpected observation that enteroendocrine system modulation to T2D target could be achieved by surgically induced anatomical rearrangement of the GI tract. These findings resulted from the widespread use of bariatric surgery procedures for obesity treatment, which despite initially devised to induce weight loss by limiting the systemic availably of nutrients, are now well recognized to influence GI hormone dynamics in a manner that is highly dependent on the type of anatomical rearrangement produced.This chapter will focus on enteroendocrine system related mechanisms leading to improved glycemic control in T2D after bariatric surgery interventions.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Células Endócrinas , Hormônios Gastrointestinais/uso terapêutico , Obesidade/terapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/cirurgia , Controle Glicêmico , Humanos
7.
Bull Exp Biol Med ; 170(5): 618-622, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33788103

RESUMO

Glucagon-like peptide-1 (GLP-1), a product of partial proteolysis of proglucagon, is involved not only in regulation of carbohydrates, but also in water-salt metabolism. The study examined the role of proglucagon derivatives GLP-1, GLP-2, and oxyntomodulin in rat osmoregulation. Of them, only blood plasma GLP-1 increased in response to water load (20 ml/kg). Administration of glucose (1.5 g/kg) elevated GLP-1 and oxyntomodulin but did not change the level of GLP-2. GLP-1 accelerated excretion of excess water during hyperhydration, whereas GLP-2 decreased this parameter. No physiological effects of oxyntomodulin in the kidneys were revealed. Probably, the blood levels of proglucagon derivatives are independently regulated for each peptide. In contrast to GLP-2 and oxyntomodulin, GLP-1 is involved in osmoregulation.


Assuntos
Peptídeos/farmacologia , Proglucagon/farmacologia , Animais , Feminino , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 2 Semelhante ao Glucagon/química , Rim/efeitos dos fármacos , Rim/metabolismo , Osmorregulação/efeitos dos fármacos , Peptídeos/química , Proglucagon/química , Ratos , Ratos Wistar
8.
Curr Diab Rep ; 20(7): 26, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32436022

RESUMO

PURPOSE OF REVIEW: Obesity affects over than 600 million adults worldwide resulting in multi-organ complications and major socioeconomic impact. The purpose of this review is to summarise the physiological effects as well as the therapeutic implications of the gut hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin, peptide YY (PYY), and glucose-dependent insulinotropic peptide (GIP) in the treatment of obesity and type 2 diabetes. RECENT FINDINGS: Clinical trials have proven that the widely used GLP-1 analogues have pleotropic effects beyond those on weight and glucose metabolism and appear to confer favourable cardiovascular and renal outcomes. However, GLP-1 analogues alone do not deliver sufficient efficacy for the treatment of obesity, being limited by their dose-dependent gastrointestinal side effects. Novel dual agonists for GLP-1/glucagon and GLP-1/GIP are being developed by the pharmaceutical industry and have demonstrated some promising results for weight loss and improvement in glycaemia over and above GLP-1 analogues. Triagonists (for example GLP-1/GIP/glucagon) are currently in pre-clinical or early clinical development. Gastrointestinal hormones possess complementary effects on appetite, energy expenditure, and glucose metabolism. We highlight the idea that combinations of these hormones may represent the way forward in obesity and diabetes therapeutics.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Adulto , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico , Humanos , Obesidade/tratamento farmacológico , Peptídeos
9.
Horm Behav ; 118: 104640, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765661

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that severely affects the health and lifespan of the elderly worldwide. Recently, the correlation between AD and type 2 diabetes mellitus (T2DM) has received intensive attention, and a promising new anti-AD strategy is the use of anti-diabetic drugs. Oxyntomodulin (Oxm) is a peptide hormone and growth factor that acts on neurons in the hypothalamus. OXM activates glucagon-like peptide 1 (GLP-1) and glucagon (Gcg) receptors, facilitates insulin signaling and has neuroprotective effects against Aß1-42-induced cytotoxicity in primary hippocampal neurons. Here, we tested the effects of the protease-resistant analogue (D-Ser2)Oxm on spatial memory and synaptic plasticity and the underlying molecular mechanisms in the APP/PS1 transgenic mouse model of AD. The results showed that (D-Ser2)Oxm not only alleviated the impairments of working memory and long-term spatial memory, but also reduced the number of Aß plaques in the hippocampus, and reversed the suppression of hippocampal synaptic long-term potentiation (LTP). Moreover, (D-Ser2)Oxm administration significantly increased p-PI3K/p-AKT1 expression and decreased p-GSK3ß levels in the hippocampus. These results are the first to show an in vivo neuroprotective role of (D-Ser2)Oxm in APP/PS1 mice, and this role involves the improvement of synaptic plasticity, clearance of Aß and normalization of PI3K/AKT/GSK3ß cell signaling in the hippocampus. This study suggests that (D-Ser2)Oxm holds promise for the prevention and treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Plasticidade Neuronal/efeitos dos fármacos , Oxintomodulina/farmacologia , Receptores de Glucagon/agonistas , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipocampo/efeitos dos fármacos , Insulina/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Oxintomodulina/uso terapêutico , Presenilina-1/genética
10.
Diabetes Obes Metab ; 22(12): 2437-2450, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33463043

RESUMO

AIM: The aim of this study was to evaluate amino acids as glucagon receptor (GCGR)-specific biomarkers in rodents and cynomolgus monkeys in the presence of agonism of both glucagon-like peptide-1 receptor (GLP1R) and GCGR with a variety of dual agonist compounds. MATERIALS AND METHODS: Primary hepatocytes, rodents (normal, diet-induced obese and GLP1R knockout) and cynomolgus monkeys were treated with insulin (hepatocytes only), glucagon (hepatocytes and cynomolgus monkeys), the GLP1R agonist, dulaglutide, or a variety of dual agonists with varying GCGR potencies. RESULTS: A long-acting dual agonist, Compound 2, significantly decreased amino acids in both wild-type and GLP1R knockout mice in the absence of changes in food intake, body weight, glucose or insulin, and increased expression of hepatic amino acid transporters. Dulaglutide, or a variant of Compound 2 lacking GCGR agonism, had no effect on amino acids. A third variant with ~31-fold less GCGR potency than Compound 2 significantly decreased amino acids, albeit to a significantly lesser extent than Compound 2. Dulaglutide (with saline infusion) had no effect on amino acids, but an infusion of glucagon dose-dependently decreased amino acids on the background of GLP1R engagement (dulaglutide) in cynomolgus monkeys, as did Compound 2. CONCLUSIONS: These results show that amino acids are sensitive and translatable GCGR-specific biomarkers.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptores de Glucagon , Aminoácidos , Animais , Biomarcadores , Glucagon , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucagon/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32380163

RESUMO

Oxyntomodulin (OXM) is a proglucagon-derived peptide that suppresses hunger in humans. There are some differences in its food intake-inhibitory effects among species. The central mechanisms are unclear and it is unknown if OXM is more efficacious in a gallinaceous species that has not undergone as much selection for growth as the chicken. The objective was thus to determine the effects of OXM on food and water intake and hypothalamic physiology in Japanese quail. At 7 days post-hatch, 6-h-fasted quail were injected intracerebroventricularly (ICV) or intraperitoneally (IP) with 0.32, 0.65, or 1.3 nmol of OXM. All doses decreased food intake for 180 min post-ICV injection. On a cumulative basis, water intake was not affected until 120 min, with the lowest and highest doses decreasing water intake after ICV injection. The two highest doses were anorexigenic when administered via the IP route, whereas all doses were anti-dipsogenic starting at 30 min post-injection. In hypothalamic samples collected at 1-h post-ICV injection, there was an increase in c-Fos immunoreactivity, an indicator of recent neuronal activation, in the arcuate nucleus (ARC) and dorsomedial nucleus (DMN) of the hypothalamus in OXM-injected individuals. Results suggest that quail are more sensitive than chickens to the satiety-inducing effects of OXM. The central mechanism is likely mediated through a pathway in the ARC that is conserved among species, and through activation of the DMN, an effect that is unique to quail. Such knowledge is critical for facilitating the development of novel, side effect-free anti-eating strategies to promote weight-loss in obesity.


Assuntos
Apetite/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Coturnix/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Oxintomodulina/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória
12.
Cell Tissue Res ; 375(2): 359-369, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30259122

RESUMO

We use a monoclonal antibody against the C-terminal of oxyntomodulin (OXM) to investigate enteroendocrine cells (EEC) in mouse, rat, human and pig. This antibody has cross-reactivity with the OXM precursor, glicentin (Gli) but does not recognise glucagon. The antibody stained EEC in the jejunum and colon of each species. We compared OXM/Gli immunoreactivity with that revealed by antibodies against structurally related peptides, GLP-1 and glucagon and against GIP and PYY that are predicted to be in some EEC that express OXM/Gli. We used super-resolution to locate immunoreactive vesicles. In the pancreas, OXM/Gli was in glucagon cells but was located in separate storage vesicles to glucagon. In jejunal EEC, OXM/Gli and GIP were in many of the same cells but often in separate vesicles, whereas PYY and OXM/Gli were commonly colocalised in the same storage vesicles of colonic EEC. When binding of anti-GLP-1 to the structurally related GIP was removed by absorption with GIP peptide, GLP-1 and OXM/Gli immunoreactivities were contained in the same population of EEC in the intestine. We conclude that anti-OXM/Gli is a more reliable marker than anti-GLP-1 for EEC expressing preproglucagon products. Storage vesicles that were immunoreactive for OXM/Gli were almost always immunoreactive for GLP-1. OXM concentrations, measured by ELISA, were highest in the distal ileum and colon. Lesser concentrations were found in more proximal parts of small intestine and pancreas. Very little was in the stomach. In EEC containing GIP and OXM/Gli, these hormones are packaged in different secretory vesicles. Separate packaging also occurred for OXM and glucagon, whereas OXM/Gli and PYY and OXM/Gli and GLP-1 were commonly contained together in secretory vesicles.


Assuntos
Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Oxintomodulina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Colo/metabolismo , Feminino , Glucagon/química , Glucagon/genética , Glucagon/metabolismo , Humanos , Jejuno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Oxintomodulina/química , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Transporte Proteico , Ratos , Especificidade da Espécie , Frações Subcelulares , Suínos
13.
Diabetes Obes Metab ; 21(2): 417-423, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30187644

RESUMO

Current knowledge of biomarkers of intra-pancreatic fat deposition (IFD) is limited. We aimed to analyse comprehensively body composition and insulin traits as biomarkers of IFD in healthy normoglycaemic individuals as well as in individuals with new-onset prediabetes or diabetes after acute pancreatitis (NODAP). A total of 29 healthy individuals and 34 individuals with NODAP took part in this cross-sectional study. The studied biomarkers belonged to the following domains: body composition (anthropometric and MRI-derived variables); indices of insulin secretion; indices of insulin sensitivity; incretins and related peptides; and pancreatitis-related factors. All MRI-derived variables (including IFD) were measured using ImageJ software. Univariate and step-wise regression analyses were conducted to determine variables that best explained variance in IFD. Visceral fat volume and oxyntomodulin were the best biomarkers of IFD in normoglycaemic healthy individuals, contributing to 64% variance. The Raynaud index was the best biomarker of IFD in individuals with NODAP, contributing to 20% variance. Longitudinal studies are warranted to investigate the cause and effect relationship between oxyntomodulin and IFD in healthy individuals, as well as insulin sensitivity and IFD in individuals with NODAP.


Assuntos
Composição Corporal/fisiologia , Diabetes Mellitus/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/fisiologia , Pâncreas/metabolismo , Pancreatite/metabolismo , Estado Pré-Diabético/metabolismo , Doença Aguda , Adiposidade/fisiologia , Adulto , Idade de Início , Estudos Transversais , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/patologia , Feminino , Voluntários Saudáveis , Humanos , Gordura Intra-Abdominal/patologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Pancreatite/diagnóstico , Pancreatite/epidemiologia , Pancreatite/patologia , Estado Pré-Diabético/complicações , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/patologia
14.
Tetrahedron ; 75(2): 286-295, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30581241

RESUMO

A panel of three lipid-modified, functionalized biphenyl cross-linkers (fBph) were synthesized and subsequently employed in the preparation of the stapled oxyntomodulin (OXM) analogs. In a luciferase-based reporter assay, these stapled OXM analogs showed varying degree of potency in activating GLP-1R and GCGR, presumably due to the disparate effect of the lipid chains on the local environment close to the ligand-receptor binding interface. In particular, the fBph-1 cross-linked peptide with the lipid chain attached to position-3 of the biphenyl cross-linker exhibited the highest dual agonist activity.

15.
Scand J Gastroenterol ; 52(12): 1331-1339, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28853300

RESUMO

OBJECTIVES: The prevalence, gender distribution and clinical presentation of IBS differ between Asian and Western countries. This study aimed at studying and comparing enteroendocrine, Musashi 1 (Msi 1) and neurogenin 3 (neurog 3) cells in Thai and Norwegian IBS patients. MATERIAL AND METHODS: Thirty Thai and 61 Norwegian IBS patients as well as 20 Thai and 24 Norwegian controls were included. Biopsy samples were taken from each of the sigmoid colon and the rectum during a standard colonoscopy. The samples were immunostained for serotonin, peptide YY, oxyntomodulin, pancreatic polypeptide, somatostatin, Msi 1 and neurog 3. The densities of immunoreactive cells were determined with computerized image analysis. RESULTS: The densities of several enteroendocrine cell types were altered in both the colon and rectum of both Thai and Norwegian IBS patients. Some of these changes were similar in Thai and Norwegian IBS patients, while others differed. CONCLUSIONS: The findings of abnormal densities of the enteroendocrine cells in Thai patients support the notion that enteroendocrine cells are involved in the pathophysiology of IBS. The present observations highlight that IBS differs in Asian and Western countries, and show that the changes in large-intestine enteroendocrine cells in Thai and Norwegian IBS patients might be caused by different mechanisms.


Assuntos
Colo/citologia , Células Enteroendócrinas/metabolismo , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Reto/citologia , Idoso , Povo Asiático , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Biópsia , Estudos de Casos e Controles , Colo/patologia , Colonoscopia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/análise , Noruega , Oxintomodulina/análise , Polipeptídeo Pancreático/análise , Peptídeo YY/análise , Proteínas de Ligação a RNA/análise , Reto/patologia , Serotonina/análise , Somatostatina/análise , Células-Tronco/metabolismo , Células-Tronco/patologia , Tailândia , População Branca
16.
Am J Physiol Endocrinol Metab ; 309(11): E887-99, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26487007

RESUMO

Glucose is the prominent molecule that characterizes diabetes and, like the vast majority of nutrients in our diet, it is absorbed and enters the bloodstream directly through the small intestine; hence, small intestine physiology impacts blood glucose levels directly. Accordingly, intestinal regulatory modulators represent a promising avenue through which diabetic blood glucose levels might be moderated clinically. Despite the critical role of small intestine in blood glucose homeostasis, most physiological diabetes research has focused on other organs, such as the pancreas, kidney, and liver. We contend that an improved understanding of intestinal regulatory mediators may be fundamental for the development of first-line preventive and therapeutic interventions in patients with diabetes and diabetes-related diseases. This review summarizes the major important intestinal regulatory mediators, discusses how they influence intestinal glucose absorption, and suggests possible candidates for future diabetes research and the development of antidiabetic therapeutic agents.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sacarose Alimentar/metabolismo , Glucose/metabolismo , Absorção Intestinal , Modelos Biológicos , Animais , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Sacarose Alimentar/efeitos adversos , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo
17.
Diabetes Obes Metab ; 17(9): 887-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26095087

RESUMO

AIM: To assess the therapeutic benefits of regulatory peptides other than insulin, which have to date received limited consideration in the context of type 1 diabetes. METHODS: We assessed the effects of subchronic administration of the stable, oxyntomodulin (Oxm) analogue, (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL], for 28 days in streptozotocin (STZ)-induced insulin-deficient diabetic mice. RESULTS: Twice-daily injection with (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL] significantly countered the excessive food and fluid intake in STZ-induced diabetic mice, and maintained normal body weight. Lean body mass was normalized, whilst fat mass was significantly increased compared with control STZ-induced diabetic mice. In addition, circulating glucose was significantly reduced by the Oxm analogue, whilst plasma and pancreatic insulin concentrations were increased and glucagon decreased by day 28. Plasma lipid profile was normalized by (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL] administration and circulating amylase was not significantly altered by induction of diabetes or Oxm analogue therapy. This was associated with significantly improved glucose tolerance and insulin secretion. Peripheral insulin sensitivity was also significantly improved by Oxm analogue treatment. Histological examination of pancreata showed beneficial elevations of total islet and ß-cell area, associated with an increase in the number of smaller-sized islets. Further analysis revealed enhanced islet cell proliferation relative to apoptosis in Oxm analogue-treated mice. CONCLUSION: These studies emphasize the potential of stable Oxm-based peptides, such as (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL], as therapeutic agents for insulin-deficient type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hormônios Gastrointestinais/farmacologia , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Ingestão de Alimentos/efeitos dos fármacos , Glucagon/efeitos dos fármacos , Insulina/análise , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Oxintomodulina , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
18.
Br J Nutr ; 114(6): 899-907, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26259632

RESUMO

Certain purified indigestible carbohydrates such as inulin have been shown to stimulate gut-derived hormones involved in glycaemic regulation and appetite regulation, and to counteract systemic inflammation through a gut microbiota-mediated mechanism. Less is known about the properties of indigestible carbohydrates intrinsic to food. The aim of this study was to investigate the possibility to affect release of endogenous gut hormones and ameliorate appetite control and glycaemic control by ingestion of a whole-grain cereal food product rich in NSP and resistant starch in healthy humans. In all, twenty middle-aged subjects were provided with a barley kernel-based bread (BB) or a reference white wheat bread during 3 consecutive days, respectively, in a randomised cross-over design study. At a standardised breakfast the following day (day 4), blood was collected for the analysis of blood (b) glucose regulation, gastrointestinal hormones, markers of inflammation and markers of colonic fermentation; 3 d of intervention with BB increased gut hormones in plasma (p) the next morning at fasting (p-glucagon-like peptide-1; 56%) and postprandially (p-glucagon-like peptide-2; 13% and p-peptide YY; 18%). Breath H2 excretion and fasting serum (s) SCFA concentrations were increased (363 and 18%, respectively), and b-glucose (22%) and s-insulin responses (17%) were decreased after BB intervention. Insulin sensitivity index (ISI(composite)) was also improved (25%) after BB. In conclusion, 3 d of intervention with BB increased systemic levels of gut hormones involved in appetite regulation, metabolic control and maintenance of gut barrier function, as well as improved markers of glucose homoeostasis in middle-aged subjects, altogether relevant for the prevention of obesity and the metabolic syndrome.


Assuntos
Regulação do Apetite , Pão , Fenômenos Fisiológicos da Nutrição do Idoso , Hordeum/química , Resistência à Insulina , Mucosa Intestinal/metabolismo , Grãos Integrais , Idoso , Biomarcadores/sangue , Desjejum , Estudos de Coortes , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Estudos Cross-Over , Feminino , Fermentação , Microbioma Gastrointestinal/imunologia , Peptídeos Semelhantes ao Glucagon/sangue , Peptídeos Semelhantes ao Glucagon/metabolismo , Humanos , Mediadores da Inflamação/análise , Mediadores da Inflamação/sangue , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Pessoa de Meia-Idade , Peptídeo YY/sangue , Peptídeo YY/metabolismo
19.
Curr Ther Res Clin Exp ; 77: 111-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26843896

RESUMO

AIMS: To investigate the effect of Glu-3 OXM-like analogues on food intake and bodyweight in male rats. BACKGROUND: Oxyntomodulin (OXM) is a natural agonist at both the glucagon receptor (GCGr) and the glucagon-like peptide 1 receptor (GLP-1r), and peripheral administration reduces food intake and increases energy expenditure in rodents and humans. Substituting the native glutamine (Gln) at amino acid position 3 of OXM for glutamate (Glu) has previously been shown to diminish GCGr activity without affecting GLP-1r activity. The effects of Glu-3 OXM analogues have not been investigated in rats. METHODS: The effect of 2 Glu-3-substituted OXM-like analogues (eg, OXM14E3 and OXM15E3) on food intake and body weight was investigated in male Wistar rats during 6 days of daily subcutaneous (SC) administration. The effects of Glu-3 substitution on analogue binding and activity at the rat GCGr and rat GLP-1 receptor were investigated in vitro using Chinese hamster ovary or Chinese hamster lung cells. RESULTS: We report the novel finding that 2 5-nmol/kg Glu-3 OXM-like analogues (OXM14E3 and OXM15E3) significantly increased rat body weight by up to 4% compared with the equivalent non-Glu-3 analogues (OXM14 and OXM15), without affecting food intake. The effect of OXM15E3 on body weight was dose-dependent. Glu-3 analogues, including Glu-3 OXM, decreased glucagon-mediated cyclic adenosine monophosphate accumulation in Chinese hamster ovary cells expressing the rat GCGr, suggesting they may be acting as antagonists. CONCLUSIONS: The results indicate Glu-3 OXM-like analogues might not be suitable tools to investigate the mechanism of OXM analogue action in a rat model because they significantly increase body weight independent of food intake. Glu-3 OXM analogues are partial agonists at the rat GCGr and may also act as antagonists, possibly resulting in the observed increase in body weight.

20.
Eur J Pharmacol ; 962: 176215, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056618

RESUMO

OBJECTIVE: Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS: The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS: OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION: These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores de Glucagon/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oxintomodulina/farmacologia , Oxintomodulina/uso terapêutico , Glucagon/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA