Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 41(7): 1427-1441, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937373

RESUMO

BACKGROUND: Individuals with Alzheimer's disease (AD) often require many medications; however, these medications are dosed using regimens recommended for individuals without AD. This is despite reduced abundance and function of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) in AD, which can impact brain exposure of drugs. The fundamental mechanisms leading to reduced P-gp abundance in sporadic AD remain unknown; however, it is known that the apolipoprotein E (apoE) gene has the strongest genetic link to sporadic AD development, and apoE isoforms can differentially alter BBB function. The aim of this study was to assess if apoE affects P-gp abundance and function in an isoform-dependent manner using a human cerebral microvascular endothelial cell (hCMEC/D3) model. METHODS: This study assessed the impact of apoE isoforms on P-gp abundance (by western blot) and function (by rhodamine 123 (R123) uptake) in hCMEC/D3 cells. Cells were exposed to recombinant apoE3 and apoE4 at 2 - 10 µg/mL over 24 - 72 hours. hCMEC/D3 cells were also exposed for 72 hours to astrocyte-conditioned media (ACM) from astrocytes expressing humanised apoE isoforms. RESULTS: P-gp abundance in hCMEC/D3 cells was not altered by recombinant apoE4 relative to recombinant apoE3, nor did ACM containing human apoE isoforms alter P-gp abundance. R123 accumulation in hCMEC/D3 cells was also unchanged with recombinant apoE isoform treatments, suggesting no change to P-gp function, despite both abundance and function being altered by positive controls SR12813 (5 µM) and PSC 833 (5 µM), respectively. CONCLUSIONS: Different apoE isoforms have no direct influence on P-gp abundance or function within this model, and further in vivo studies would be required to address whether P-gp abundance or function are reduced in sporadic AD in an apoE isoform-specific manner.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Isoformas de Proteínas , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/citologia , Isoformas de Proteínas/metabolismo , Rodamina 123/metabolismo
2.
Toxicol Appl Pharmacol ; 459: 116344, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526072

RESUMO

P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP/ABCG2) are efflux multidrug resistance (MDR) transporters localized at the syncytiotrophoblast barrier of the placenta and protect the conceptus from drug and toxin exposure throughout pregnancy. Infection is an important modulator of MDR expression and function. This review comprehensively examines the effect of infection on the MDR transporters, P-gp and BCRP in the placenta. Infection PAMPs such as bacterial lipopolysaccharide (LPS) and viral polyinosinic-polycytidylic acid (poly I:C) and single-stranded (ss)RNA, as well as infection with Zika virus (ZIKV), Plasmodium berghei ANKA (modeling malaria in pregnancy - MiP) and polymicrobial infection of intrauterine tissues (chorioamnionitis) all modulate placental P-gp and BCRP at the levels of mRNA, protein and or function; with specific responses varying according to gestational age, trophoblast type and species (human vs. mice). Furthermore, we describe the expression and localization profile of Toll-like receptor (TLR) proteins of the innate immune system at the maternal-fetal interface, aiming to better understand how infective agents modulate placental MDR. We also highlight important gaps in the field and propose future research directions. We conclude that alterations in placental MDR expression and function induced by infective agents may not only alter the intrauterine biodistribution of important MDR substrates such as drugs, toxins, hormones, cytokines, chemokines and waste metabolites, but also impact normal placentation and adversely affect pregnancy outcome and maternal/neonatal health.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Distribuição Tecidual , Proteínas de Neoplasias/genética , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/metabolismo
3.
FASEB J ; 36(4): e22245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262963

RESUMO

Antenatal synthetic glucocorticoids (sGCs) are a life-saving treatment in managing pre-term birth. However, off-target effects of sGCs can impact blood-brain barrier (BBB) drug transporters essential for fetal brain protection, including P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex-dependent manner. Thus, the objective of this study was to determine the long-term impact of a single or multiple courses of betamethasone on P-gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post-natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P-gp/Abcb1 and BCRP/Abcg2. P-gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P-gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P-gp function in males compared to females (p = .055). Reduced P-gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P-gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.


Assuntos
Barreira Hematoencefálica , Glucocorticoides , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Betametasona/metabolismo , Betametasona/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Cobaias , Masculino , Proteínas de Neoplasias/metabolismo , Gravidez
4.
Bioorg Med Chem ; 84: 117260, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003156

RESUMO

The accumulation of radiolabeled phosphonium cations in cells is dependent on the mitochondrial membrane potential (MMP). However, the efflux of these cations from tumor cells via P-glycoprotein (P-gp) limits their clinical application as MMP-based imaging tracers. In the present study, we designed (E)-diethyl-4-[125I]iodobenzyl-4-stilbenylphosphonium ([125I]IDESP), which contains a stilbenyl substituent, as a P-gp inhibitor to reduce P-gp recognition, and evaluated its biological properties in comparison with 4-[125I]iodobenzyl dipropylphenylphosphonium ([125I]IDPP). The in vitro cellular uptake ratio of [125I]IDESP in P-gp expressing K562/Vin cells to the parent (P-gp negative) K562 cells was significantly higher than that of [125I]IDPP. The efflux rate of [125I]IDESP was not significantly different between K562 and K562/Vin, while [125I]IDPP was rapidly effluxed from K562/Vin compared with K562, and the efflux of [125I]IDPP from K562/Vin was inhibited by the P-gp inhibitor, cyclosporine A. The cellular uptake of [125I]IDESP was well correlated with the MMP levels. These results suggested that [125I]IDESP was accumulated in cells depending on the MMP levels, without being effluxed via P-gp, while [125I]IDPP was rapidly effluxed from the cells via P-gp. Despite having suitable in vitro properties for MMP-based imaging, [125I]IDESP showed rapid blood clearance and lower tumor accumulation than [125I]IDPP. Improvement in the normal tissue distribution of [125I]IDESP is required to develop an agent for use in in vivo MMP-based tumor imaging.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Radioisótopos do Iodo , Potencial da Membrana Mitocondrial , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glicoproteínas , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacologia , Células K562 , Potencial da Membrana Mitocondrial/fisiologia , Ensaio Radioligante/métodos
5.
J Pharm Pharm Sci ; 26: 11927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304488

RESUMO

Purpose: This study aims to investigate the potential of Oregon grape root extracts to modulate the activity of P-glycoprotein. Methods: We performed 3H-CsA or 3H-digoxin transport experiments in the absence or presence of two sources of Oregon grape root extracts (E1 and E2), berberine or berbamine in Caco-2 and MDCKII-MDR1 cells. In addition, real time quantitative polymerase chain reaction (RT-PCR) was performed in Caco-2 and LS-180 cells to investigate the mechanism of modulating P-glycoprotein. Results: Our results showed that in Caco-2 cells, Oregon grape root extracts (E1 and E2) (0.1-1 mg/mL) inhibited the efflux of CsA and digoxin in a dose-dependent manner. However, 0.05 mg/mL E1 significantly increased the absorption of digoxin. Ten µM berberine and 30 µM berbamine significantly reduced the efflux of CsA, while no measurable effect of berberine was observed with digoxin. In the MDCKII-MDR1 cells, 10 µM berberine and 30 µM berbamine inhibited the efflux of CsA and digoxin. Lastly, in real time RT-PCR study, Oregon grape root extract (0.1 mg/mL) up-regulated mRNA levels of human MDR1 in Caco-2 and LS-180 cells at 24 h. Conclusion: Our study showed that Oregon grape root extracts modulated P-glycoprotein, thereby may affect the bioavailability of drugs that are substrates of P-glycoprotein.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Berberina , Mahonia , Extratos Vegetais , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Berberina/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Digoxina/metabolismo , Mahonia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Animais , Cães , Ciclosporina/metabolismo , Células Madin Darby de Rim Canino
6.
J Pharmacokinet Pharmacodyn ; 50(5): 365-376, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344637

RESUMO

Enzalutamide is known to strongly induce cytochrome P450 3A4 (CYP3A4). Furthermore, enzalutamide showed induction and inhibition of P-glycoprotein (P-gp) in in vitro studies. A clinical drug-drug interaction (DDI) study between enzalutamide and digoxin, a typical P-gp substrate, suggested enzalutamide has weak inhibitory effect on P-gp substrates. Direct oral anticoagulants (DOACs), such as apixaban and rivaroxaban, are dual substrates of CYP3A4 and P-gp, and hence it is recommended to avoid co-administration of these DOACs with combined P-gp and strong CYP3A inducers. Enzalutamide's net effect on P-gp and CYP3A for apixaban and rivaroxaban plasma exposures is of interest to physicians who treat patients for venous thromboembolism with prostate cancer. Accordingly, a physiologically-based pharmacokinetic (PBPK) analysis was performed to predict the magnitude of DDI on apixaban and rivaroxaban exposures in the presence of 160 mg once-daily dosing of enzalutamide. The PBPK models of enzalutamide and M2, a major metabolite of enzalutamide which also has potential to induce CYP3A and P-gp and inhibit P-gp, were developed and verified as perpetrators of CYP3A-and P-gp-mediated interaction. Simulation results predicted a 31% decrease in AUC and no change in Cmax for apixaban and a 45% decrease in AUC and a 25% decrease in Cmax for rivaroxaban when 160 mg multiple doses of enzalutamide were co-administered. In summary, enzalutamide is considered to decrease apixaban and rivaroxaban exposure through the combined effects of CYP3A induction and net P-gp inhibition. Concurrent use of these drugs warrants careful monitoring for efficacy and safety.


Assuntos
Citocromo P-450 CYP3A , Rivaroxabana , Masculino , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Preparações Farmacêuticas/metabolismo , Modelos Biológicos
7.
Saudi Pharm J ; 31(6): 962-971, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234351

RESUMO

Vitamin B12 (VB12) is a vital micronutrient to maintain the normal state of the hematopoietic system. It must be obtained from the diet since the human body cannot synthesize it. Moreover, the absorption of VB12 needs to be mediated by intrinsic factor on the gastrointestinal (GI) track. The abnormalities in the stomach or lack of such intrinsic factors may result in poor oral absorption of VB12. However, the very advanced formulation strategies were generally very costly and still in the development stage. Thus, the objectives of the present study were to increase the VB12 intestinal absorption by conventional excipients of Gelucire 44/14 (G44/14) or Labrasol, which could be potentially formulated as a cost effect balanced product. The in vitro Caco-2 cell model was applied for the absorption study. A novel VB12 solid dispersion was subsequently prepared and further characterized by Differential scanning calorimetry, Fourier transform infrared spectroscopy, and Scanning electron microscopy, respectively. The membrane permeability of the VB12 solid dispersion was finally evaluated using ex vivo rat everted gut sac method. The results suggested that G44/14 could significantly enhance the intestinal absorption of VB12 via P-glycoprotein inhibition in vitro (P < 0.01). The membrane permeability of VB12could be significantly (P < 0.01) improved by G44/14-VB12 solid dispersion at a proportion of carrier: drug ratio of 20:1.The liquidfied solid dispersion was finally directly filled in the hard gelatin capsules. In conclusion, the cheap and simplified process of VB12 complex prepared by G44/14 could potentially increase VB12 intestinal absorption, which may be liable to commercial manufacturing.

8.
Med Res Rev ; 41(1): 525-555, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33047304

RESUMO

Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.


Assuntos
Antineoplásicos , Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico
9.
Pharm Res ; 38(6): 1031-1039, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009624

RESUMO

PURPOSE: The purpose of this research is to analyze non-linear pharmacokinetics of P-glycoprotein (P-gp) substrates in a cell based assay of a microfluidic device, which might be affected by hydrodynamic barrier (unstirred water layer, UWL). RESULTS: Apparent permeability (Papp) were obtained using non-P-gp substrates (propranolol, metoprolol, and atenolol) and P-gp substrates (quinidine and talinolol) in a commercially available microfluidic device, organoplate ® of Caco-2 cell based assay. The previous UWL resistance model was well fitted to Papp of static and flow condition by assuming UWL including and negligible condition, while P-gp substrates of higher passive permeability (quinidine) was apart from the fitting curve. The concentration dependent non-linear kinetics of P-gp substrates, quinidine and talinolol, was more analyzed in detail, and apparent Vmax discrepancy between static and flow assay condition in the quinidine assay was observed, while that was not observed in talinolol, the lower permeable substrate. Based on the experimental results, a mathematical model for P-gp substrates including UWL compartment on the previous 3-compartment model was developed, and it indicated that the apparent Vmax was variable along with the ratio between passive permeability and UWL permeability. CONCLUSIONS: The mathematical model adding UWL compartment well explained non-linear pharmacokinetics of apparent permeability of P-gp substrate in the microfluidic device. The model also has a potential to be applied to P-gp substrate permeability analysis in vivo.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacocinética , Dispositivos Lab-On-A-Chip , Modelos Teóricos , Dinâmica não Linear , Água/metabolismo , Células CACO-2 , Relação Dose-Resposta a Droga , Humanos , Propanolaminas/farmacocinética , Propranolol/farmacocinética , Especificidade por Substrato/fisiologia
10.
Biol Pharm Bull ; 44(5): 701-706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952826

RESUMO

We previously reported that exposure of human colon adenocarcinoma (Caco-2) cells to the bitter substance phenylthiocarbamide (PTC) rapidly enhanced the transport function of P-glycoprotein (P-gp). In this study, we investigated the short-term effect of etoposide, another bitter-tasting P-gp substrate, on P-gp transport function in the same cell line. We found that etoposide exposure significantly increased both the P-gp protein level in the plasma membrane fraction and the efflux rate of rhodamine123 (Rho123) in Caco-2 cells within 10 min. The efflux ratio (ratio of the apparent permeability coefficient in the basal-to-apical direction to that in the apical-to-basal direction) of Rho123 in etoposide-treated cells was also significantly increased compared with the control. These results indicated that etoposide rapidly enhances P-gp function in Caco-2 cells. In contrast, P-gp expression in whole cells at both the mRNA and protein level was unchanged by etoposide exposure, compared with the levels in non-treated cells. Furthermore, etoposide increased the level of phosphorylated ezrin, radixin and moesin (P-ERM) proteins in the plasma membrane fraction of Caco-2 cells within 10 min. P-gp functional changes were blocked by YM022, an inhibitor of cholecystokinin (CCK) receptor. These results suggest that etoposide induces release of CCK, causing activation of the CCK receptor followed by phosphorylation of ERM proteins, which recruit intracellular P-gp for trafficking to the gastrointestinal membrane, thereby increasing the functional activity of P-gp.


Assuntos
Etoposídeo/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Benzodiazepinas/farmacologia , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colecistocinina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosforilação/efeitos dos fármacos , Receptor de Colecistocinina B/antagonistas & inibidores , Receptor de Colecistocinina B/metabolismo
11.
Biol Pharm Bull ; 44(4): 465-473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790097

RESUMO

From the viewpoint of drug discovery, it is an important issue to elucidate the drug permeability at the human central nervous system (CNS) barriers and the molecular mechanisms in the cells forming CNS barriers especially during CNS diseases. I introduced quantitative proteomics techniques into the blood-brain barrier (BBB) study, then quantitatively investigated the transport system at the human BBB and clarified the quantitative differences in protein expression levels and functions of transporters and receptors between animals and humans, or in vitro and in vivo. Based on the difference in the absolute expression level of transporters between in vitro and in vivo, I demonstrated that the drug efflux activity of P-glycoprotein (P-gp) at in vivo BBB can be accurately reconstructed from the in vitro system, not only in mouse models but also monkeys similar to humans and pathological conditions. Furthermore, I discovered Claudin-11 as another tight junction molecule expressed at the CNS barriers, and clarified that it contributes to the disruption of the CNS barriers in multiple sclerosis. Furthermore, it was also elucidated that the P-gp dysfunction causes excessive brain entry of glucocorticoid which causes a nerve damage in cerebral infarct, and it can be suppressed by targeting Abl/Src kinases. These suggest that targeting the tight junctions and transporters, which are important molecules at the CNS barriers, would potentially lead to the treatment of CNS diseases. In this review, I would like to introduce a new CNS barrier study opened by quantitative proteomics research.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteômica , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Infarto Cerebral/metabolismo , Claudinas/metabolismo , Descoberta de Drogas , Humanos , Esclerose Múltipla/metabolismo , Estresse Oxidativo , Junções Íntimas/metabolismo
12.
J Nanobiotechnology ; 19(1): 146, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011375

RESUMO

BACKGROUND: Paclitaxel (PTX) has been suggested to be a promising front-line drug for gastric cancer (GC), while P-glycoprotein (P-gp) could lead to drug resistance by pumping PTX out of GC cells. Consequently, it might be a hopeful way to combat drug resistance by inhibiting the out-pumping function of P-gp. RESULTS: In this study, we developed a drug delivery system incorporating PTX onto polyethylene glycol (PEG)-modified and oxidized sodium alginate (OSA)-functionalized graphene oxide (GO) nanosheets (NSs), called PTX@GO-PEG-OSA. Owing to pH/thermal-sensitive drug release properties, PTX@GO-PEG-OSA could induced more obvious antitumor effects on GC, compared to free PTX. With near infrared (NIR)-irradiation, PTX@GO-PEG-OSA could generate excessive reactive oxygen species (ROS), attack mitochondrial respiratory chain complex enzyme, reduce adenosine-triphosphate (ATP) supplement for P-gp, and effectively inhibit P-gp's efflux pump function. Since that, PTX@GO-PEG-OSA achieved better therapeutic effect on PTX-resistant GC without evident toxicity. CONCLUSIONS: In conclusion, PTX@GO-PEG-OSA could serve as a desirable strategy to reverse PTX's resistance, combined with chemo/photothermal/photodynamic therapy.


Assuntos
Trifosfato de Adenosina/metabolismo , Grafite/química , Grafite/farmacologia , Mitocôndrias/efeitos dos fármacos , Paclitaxel/farmacologia , Fotoquimioterapia/métodos , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Fototerapia , Polietilenoglicóis , Células RAW 264.7 , Espécies Reativas de Oxigênio
13.
Biochemistry (Mosc) ; 86(2): 197-206, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33832418

RESUMO

P-Glycoprotein (P-gp) is one of the most clinically significant representatives of the ABC transporter superfamily due to its participation in the transport of biotic components and xenobiotics across the plasma membrane. It is known that various chemicals, environmental factors, and pathological processes can affect P-gp activity and expression. In this study, we investigated the role of P-gp in limiting the cell membrane permeability during oxidative stress. Human adenocarcinoma colon cells (Caco-2) overexpressing P-gp were cultured for 72 h in the medium containing hydrogen peroxide (0.1-50 µM). The transport of the P-gp substrate fexofenadine was evaluated in a special Transwell system. The amounts of P-gp and Nrf2 transcription factor were analyzed by the enzyme-linked immunosorbent assay. The concentration of SH-groups in proteins and the contents of lipid peroxidation products and protein carbonyl derivatives were determined spectrophotometrically. Hydrogen peroxide at a concentration of 0.1-5 µM did not significantly affect the studied parameters, while incubation with 10 µM H2O2 decreased in the level of SH groups in cell lysates and increased in the amount of Nrf2 in the cell lysates. Nrf2, in its turn, mediated an increase in the content and activity of the P-gp transporter, thus limiting the increasing permeability of the cell membrane. Hydrogen peroxide at a concentration of 50 µM promoted oxidative stress, which was manifested as a decrease in the content of SH-groups, increase in the concentration of lipid peroxidation products and protein carbonyl derivatives, and decrease in the P-gp level, which led to a significantly increased permeability of the plasma membrane. These results show that the transport and protective roles of P-gp, in particular, reduction of the cell membrane permeability, are affected by the intensity of oxidative stress and can be manifested only if the extent of membrane damage is insignificant.


Assuntos
Permeabilidade da Membrana Celular , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Regulação Neoplásica da Expressão Gênica , Humanos , Peróxido de Hidrogênio/toxicidade , Peroxidação de Lipídeos , Terfenadina/metabolismo
14.
Drug Resist Updat ; 50: 100682, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087558

RESUMO

Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias/tratamento farmacológico , Tecnologia Farmacêutica/métodos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Glicoconjugados/química , Humanos , Nanopartículas , Óxido Nítrico/metabolismo , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Polímeros/química
15.
Phytother Res ; 35(7): 3886-3897, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33792091

RESUMO

Multidrug resistance (MDR) is one of the major obstacles for clinical effective chemotherapy. In this study, the effects and possible mechanisms of aloe-emodin (AE) were investigated on reversing the adriamycin (ADR)-induced resistance of MCF-7/ADR cells. AE could significantly reverse the ADR resistance in MCF-7/ADR cells. The combination of AE (20 µM) and ADR had no effect on the P-glycoprotein (P-gp) level, but notably promoted the accumulation of ADR in drug-resistant cells. The efflux function of P-gp required ATP, but AE reduced the intracellular ATP level. AE played a reversal role might through inhibiting the efflux function of P-gp. The research result of energy metabolism pathways indicated that combination of AE and ADR could inhibit glycolysis, tricarboxylic acid (TCA) cycle, glutamine metabolism, and related amino acid synthesis pathways. Moreover, we found AE not only reversed ADR-induced resistant but also induced autophagy as a defense mechanism. In addition, the combination of AE and ADR arrested G2/M cell cycle and induced apoptosis through DNA damage, ROS generation, caspase-3 activation. Our study indicated that AE could be a potential reversal agent to resensitize ADR resistant in tumor chemotherapy and inhibiting autophagy might be an effective strategy to further enhance the reversal activity of AE.


Assuntos
Aloe , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Emodina , Aloe/química , Doxorrubicina/farmacologia , Emodina/farmacologia , Feminino , Humanos , Células MCF-7
16.
J Cell Mol Med ; 24(18): 10636-10647, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779889

RESUMO

Malaria in pregnancy (MiP) induces intrauterine growth restriction (IUGR) and preterm labour (PTL). However, its effects on yolk sac morphology and function are largely unexplored. We hypothesized that MiP modifies yolk sac morphology and efflux transport potential by modulating ABC efflux transporters. C57BL/6 mice injected with Plasmodium berghei ANKA (5 × 105 infected erythrocytes) at gestational day (GD) 13.5 were subjected to yolk sac membrane harvesting at GD 18.5 for histology, qPCR and immunohistochemistry. MiP did not alter the volumetric proportion of the yolk sac's histological components. However, it increased levels of Abcb1a mRNA (encoding P-glycoprotein) and macrophage migration inhibitory factor (Mif chemokine), while decreasing Abcg1 (P < 0.05); without altering Abca1, Abcb1b, Abcg2, Snat1, Snat2, interleukin (Il)-1ß and C-C Motif chemokine ligand 2 (Ccl2). Transcripts of Il-6, chemokine (C-X-C motif) ligand 1 (Cxcl1), Glut1 and Snat4 were not detectible. ABCA1, ABCG1, breast cancer resistance protein (BCRP) and P-gp were primarily immunolocalized to the cell membranes and cytoplasm of endodermic epithelium but also in the mesothelium and in the endothelium of mesodermic blood vessels. Intensity of P-gp labelling was stronger in both endodermic epithelium and mesothelium, whereas ABCA1 labelling increased in the endothelium of the mesodermic blood vessels. The presence of ABC transporters in the yolk sac wall suggests that this fetal membrane acts as an important protective gestational barrier. Changes in ABCA1 and P-gp in MiP may alter the biodistribution of toxic substances, xenobiotics, nutrients and immunological factors within the fetal compartment and participate in the pathogenesis of malaria-induced IUGR and PTL.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Regulação da Expressão Gênica , Malária/metabolismo , Complicações Infecciosas na Gravidez/metabolismo , Saco Vitelino/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Citocinas/biossíntese , Citocinas/genética , Feminino , Retardo do Crescimento Fetal/etiologia , Inflamação , Malária/complicações , Malária/genética , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Plasmodium berghei , Gravidez , Complicações Infecciosas na Gravidez/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Saco Vitelino/ultraestrutura
17.
Mol Cancer ; 19(1): 10, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952518

RESUMO

BACKGROUND: PI3K/AKT is a vital signaling pathway in humans. Recently, several PI3K/AKT inhibitors were reported to have the ability to reverse cancer multidrug resistance (MDR); however, specific targets in the PI3K/AKT pathways and the mechanisms associated with MDR have not been found because many of the inhibitors have multiple targets within a large candidate protein pool. AKT activation is one presumed mechanism by which MDR develops during cancer treatment. METHODS: The effects of inhibiting PI3K 110α and 110ß by BAY-1082439 treatment and CRISPR/Cas9 knockout were examined to determine the possible functions of BAY-1082439 and the roles of PI3K 110α and 110ß in the reversal of MDR that is mediated by the downregulation of P-gp and BCRP. Inhibition of AKT with GSK-2110183 showed that the downregulation of P-gp and BCRP is independent of generalized AKT inactivation. Immunofluorescence, immunoprecipitation, MTT, flow cytometry and JC-1 staining analyses were conducted to study the reversal of MDR that is mediated by P-gp and BCRP in cancer cells. An ATPase assay and a structural analysis were also used to analyze the potential mechanisms by which BAY-1082439 specifically targets PI3K 110α and 110ß and nonspecifically influences P-gp and BCRP. RESULTS: By inhibiting the activation of the PI3K 110α and 110ß catalytic subunits through both the administration of BAY-1082439 and the CRISPR/Cas9 deletion of Pik3ca and Pik3cb, the ATP-binding cassette transporters P-gp/ABCB1 and BCRP/ABCG2 were downregulated, thereby reestablishing the drug sensitivity of human epidermoid carcinoma and non-small cell lung cancer (NSCLC) MDR cells. Inhibition of AKT did not reverse the MDR mediated by P-gp or BCRP. The ABC family proteins and AKT may play MDR-enhancing roles independently. CONCLUSIONS: The reversal of the dual functions of ABC-transporter-mediated and AKT-activation-enhanced MDR through the inhibition or knockout of PI3K 110α or 110ß promises to improve current strategies based on combined drug treatments to overcome MDR challenges.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Células Tumorais Cultivadas
18.
Biol Pharm Bull ; 43(12): 1823-1830, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32963175

RESUMO

Our previous study demonstrated that the total saponins from Paris forristii (PCT3) had obvious inhibitory effect on the proliferation of adriamycin-resistant human breast adenocarcinoma cells (MCF-7/ADM), and this effect was significantly stronger than that in parental cells (MCF-7). This study was designed to test the reversal effect of PCT3 on MCF-7/ADM cells and to understand its mechanism of action. Results demonstrated that low cytotoxic concentrations of PCT3 (0.3, 1 and 3 µg/mL) reversed resistance of MCF-7/ADM cells to ADM, cisplatin (DDP) and 5-fluorouracil (5-FU), with reversal fold of 16.4, 19.5 and 31.7 for ADM, 1.6, 1.4 and 1.4 for DDP, 1.7, 1.8 and 5.6 for 5-FU, respectively. Moreover, PCT3 significantly increased the accumulation of ADM and Rhodamine 123 (Rh123) in MCF-7/ADM cells, suggesting that PCT3 may act by affecting the function of drug efflux pump P-glycoprotein (P-gp), which is encoded by MDR1 gene. Both MDR1 gene and P-gp protein expression was downregulated by PCT3 treatment. Further results demonstrated that p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathway was remarkably activated in MCF-7/ADM cells, inhibition of p38 or ERK attenuated P-gp expression. While, only the phosphorylation level of ERK was downregulated by PCT3, indicating that PCT3 sensitized P-gp overexpressed MCF-7/ADM cells to ADM via inhibition of ERK signaling pathway.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Saponinas/farmacologia , Butadienos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Feminino , Humanos , Imidazóis/farmacologia , Células MCF-7 , Melanthiaceae , Nitrilas/farmacologia , Piridinas/farmacologia , Rodamina 123/metabolismo
19.
Pharm Dev Technol ; 25(2): 178-186, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31631736

RESUMO

Valsartan (VST) is a poorly water-soluble drug and a P-glycoprotein (P-gp) substrate. To enhance the dissolution and oral absorption of VST, a novel supersaturable self-microemulsifying drug delivery system (Su-SMEDDS) was formulated. Based on the previously reported Su-SMEDDS composed of Capmul® MCM (oil), Tween® 20 (T20; surfactant), Transcutol® P (cosurfactant), and Poloxamer 407 (supersaturating agent), P-gp inhibitory surfactants including Tween® 80 (T80) and Cremophor® EL (CR) were newly introduced to replace T20. All Su-SMEDDS formulations had a droplet size of <200 nm and showed rapid (>90% within 5 min) and pH-independent dissolution characteristics. The effective permeability coefficient (Peff) in rat jejunum was obtained using an in situ single-pass intestinal perfusion study: Peff values of Su-SMEDDS-T20, Su-SMEDDS-T80, and Su-SMEDDS-CR were 2.3, 4.1, and 3.4 times greater, respectively, than that of the VST solution. After oral administration of various formulations to rats (equivalent dose of VST 10 mg/kg), plasma drug levels were measured by liquid chromatography-tandem mass spectrometry. The relative bioavailabilities of Su-SMEDDS-T20, Su-SMEDDS-T80, and Su-SMEDDS-CR were 262%, 470%, and 458%, respectively, compared with the VST suspension. Thus, we propose that the Su-SMEDDS-T80 formulation is a good candidate for improving the oral absorption of poorly water-soluble and P-gp substrate drugs such as VST.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Valsartana/química , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos , Tensoativos/química , Valsartana/farmacologia
20.
J Cell Physiol ; 234(4): 3685-3696, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30171603

RESUMO

Though the advancement of chemotherapy drugs alleviates the progress of cancer, long-term therapy with anticancer agents gradually leads to acquired multidrug resistance (MDR), which limits the survival outcomes in patients. It was shown that dihydromyricetin (DMY) could partly reverse MDR by suppressing P-glycoprotein (P-gp) and soluble resistance-related calcium-binding protein (SORCIN) independently. To reverse MDR more effectively, a new strategy was raised, that is, circumventing MDR by the coadministration of DMY and ondansetron (OND), a common antiemetic drug, during cancer chemotherapy. Meanwhile, the interior relation between P-gp and SORCIN was also revealed. The combination of DMY and OND strongly enhanced antiproliferative efficiency of adriamycin (ADR) because of the increasing accumulation of ADR in K562/ADR-resistant cell line. DMY could downregulate the expression of SORCIN and P-gp via the ERK/Akt pathways, whereas OND could not. In addition, it was proved that SORCIN suppressed ERK and Akt to inhibit P-gp by the silence of SORCIN, however, not vice versa. Finally, the combination of DMY, OND, and ADR led to G2/M cell cycle arrest and apoptosis via resuming P53 function and restraining relevant proteins expression. These fundamental findings provided a promising approach for further treatment of MDR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Flavonóis/farmacologia , Leucemia/tratamento farmacológico , Ondansetron/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Regulação para Baixo , Doxorrubicina/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA