Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141758

RESUMO

Several P2Y nucleotide receptors have been shown to be involved in the early stage of adipocyte differentiation in vitro and insulin resistance in obese mice; however, the exact receptor subtype(s) and its underlying molecular mechanism in relevant human cells are unclear. Here, using human primary visceral preadipocytes as a model, we found that during preadipocyte-to-mature adipocyte differentiation, the P2Y2 nucleotide receptor (P2Y2R) was the most upregulated subtype among the eight known P2Y receptors and the only one further dramatically upregulated after inflammatory TNFα treatment. Functional studies indicated that the P2Y2R induced intracellular Ca2+, ERK1/2, and JNK signaling but not the p38 pathway. In addition, stimulation of the P2Y2R suppressed basal and insulin-induced phosphorylation of AKT, accompanied by decreased GLUT4 membrane translocation and glucose uptake in mature adipocytes, suggesting a role of P2Y2R in insulin resistance. Mechanistically, we found that activation of P2Y2R did not increase lipolysis but suppressed PIP3 generation. Interestingly, activation of P2Y2R triggered Gi-protein coupling, and pertussis toxin pretreatment largely inhibited P2Y2R-mediated ERK1/2 signaling and cAMP suppression. Further, treatment of the cells with AR-C 118925XX, a selective P2Y2R antagonist, significantly inhibited adipogenesis, and P2Y2R knockout decreased mouse body weight gain with smaller eWAT mass infiltrated with fewer macrophages as compared to WT mice in response to a Western diet. Thus, we revealed that terminal adipocyte differentiation and inflammation selectively upregulate P2Y2R expression and that P2Y2R mediates insulin resistance by suppressing the AKT signaling pathway, highlighting P2Y2R as a potential new drug target to combat obesity and type-2 diabetes.


Assuntos
Adipogenia , Resistência à Insulina , Receptores Purinérgicos P2Y2 , Animais , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Resistência à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Regulação para Cima , Transportador de Glucose Tipo 4/metabolismo , Transporte Proteico/genética , Lipólise/genética , Adipogenia/genética
2.
Arch Biochem Biophys ; 751: 109844, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043889

RESUMO

The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.


Assuntos
Músculo Esquelético , Transdução de Sinais , Animais , Ratos , Trifosfato de Adenosina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G471-G491, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697947

RESUMO

The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.


Assuntos
Bacteriemia , Infecções Bacterianas , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Deleção de Genes , Fígado , Citocinas/genética , Bacteriemia/complicações , Bacteriemia/genética , Nucleotídeos , Arginina , Receptores Purinérgicos , Aminoácidos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2Y2/genética , Camundongos Knockout
4.
Purinergic Signal ; 19(2): 401-420, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36219327

RESUMO

G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.


Assuntos
Dibenzocicloeptenos , Transdução de Sinais , Humanos , Pirimidinonas , Fibrose , Receptores Purinérgicos P2Y2
5.
Purinergic Signal ; 19(1): 305-313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35902482

RESUMO

Muscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells' (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs' activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.


Assuntos
Músculo Esquelético , Doenças Musculares , Animais , Humanos , Camundongos , Diferenciação Celular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Regeneração/fisiologia , Transdução de Sinais , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo
6.
Purinergic Signal ; 19(4): 663-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36653592

RESUMO

Hypertension has become a prominent public health concern. Essential hypertension (EH) is a polygenic disorder caused by multiple susceptibility genes. It has been previously shown that the purinergic P2Y2 receptor (P2Y2R) regulates blood pressure; however, whether P2Y2R genetic polymorphisms correlate with EH has not been investigated in Chinese. Our study included 500 EH cases and 504 controls who are Chinese postmenopausal women. We used allele-specific polymerase chain reaction (ASPCR) to genotype five single-nucleotide polymorphism (SNPs) in the P2Y2R gene, i.e., rs4944831, rs12366239, rs1783596, rs4382936, and rs10898909. We assessed the association of P2Y2R genetic polymorphisms with EH susceptibility. The results demonstrated that P2Y2R rs4382936A was correlated with a high risk of EH; particularly, the participants with the rs4382936A allele and CA/AA/(CA+AA) genotypes were at higher risks to EH compared to the subjects with the rs4382936C allele and CC genotype. Moreover, haplotype CAG combined by rs1783596-rs4382936-rs10898909 was a susceptible haplotype for EH, whereas haplotype CCG was a protective haplotype for EH. These results may provide new evidence for applying P2Y2R genetic polymorphisms as useful markers in clinic screening or monitoring potential EH cases in a population of Chinese postmenopausal women.


Assuntos
Hipertensão , Pós-Menopausa , Humanos , Feminino , Pós-Menopausa/genética , Hipertensão Essencial , Hipertensão/genética , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único/genética , China/epidemiologia , Predisposição Genética para Doença/genética , Frequência do Gene
7.
Purinergic Signal ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572177

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) are a heterogenous group of tumors and among the top 10 most common cancers and they arise from the epithelial tissues of the mucosal surfaces of the oral cavity, oropharynx, and larynx. Aberrant purinergic signaling has been associated with various cancer types. Here, we studied the role of the P2Y2 purinergic receptor (P2Y2R) in the context of oral cancer. We utilized bioinformatics analysis of deposited datasets to examine purinome gene expression in HNSCC tumors and cells lines and functionally characterized nucleotide-induced P2 receptor signaling in human FaDu and Cal27 and murine MOC2 oral cancer cell lines. Utilizing tumorigenesis assays with wild-type or P2ry2 knockout MOC2 cells we evaluated the role of P2Y2Rs in tumor growth and the host anti-tumor immune responses. Our data demonstrate that human and murine oral cancer cell lines express numerous P2 receptors, with the P2Y2R being highly expressed. Using syngeneic tumor grafts in wild-type mice, we observed that MOC2 tumors expressing P2Y2R were larger than P2Y2R-/- tumors. Wild-type MOC2 tumors contained a lower population of tumor-infiltrating CD11b+F4/80+ macrophages and CD3+ cells, which were revealed to be CD3+CD4+IFNγ+ T cells, compared to P2Y2R-/- tumors. These results were mirrored when utilizing P2Y2R-/- mice, indicating that the changes in MOC2 tumor growth and to the host anti-tumor immune response were independent of host derived P2Y2Rs. Results suggest that targeted suppression of the P2Y2R in HNSCC cells in vivo, rather than systemic P2Y2R antagonism, may be a more effective treatment strategy for HNSCCs.

8.
J Pharmacol Sci ; 153(1): 55-67, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524455

RESUMO

Microglial removal of dying cells plays a beneficial role in maintaining homeostasis in the CNS, whereas under some pathological conditions, inflammatory microglia can cause excessive clearance, leading to neuronal death. However, the mechanisms underlying dying cell removal by inflammatory microglia remain poorly understood. In this study, we performed live imaging to examine the purinergic regulation of dying cell removal by inflammatory activated microglia. Lipopolysaccharide (LPS) stimulation induces rapid death of primary rat microglia, and the surviving microglia actively remove dying cells. The nonselective P2 receptor antagonist, suramin, inhibited dying cell removal to the same degree as that of the selective P2Y2 antagonist, AR-C118925. This inhibition was more potent in LPS-stimulated microglia than in non-stimulated ones. LPS stimulation elicited distribution of the P2Y2 receptor on the leading edge of the plasma membrane and then induced drastic upregulation of P2Y2 receptor mRNA expression in microglia. LPS stimulation caused upregulation of the dying cell-sensing inflammatory Axl phagocytic receptor, which was suppressed by blocking the P2Y2 receptor and its downstream signaling effector, proline-rich tyrosine kinase (Pyk2). Together, these results indicate that inflammatory stimuli may activate the P2Y2 receptor, thereby mediating dying cell removal, at least partially, through upregulating phagocytic Axl in microglia.


Assuntos
Lipopolissacarídeos , Microglia , Ratos , Animais , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Proteínas Tirosina Quinases/metabolismo , Apoptose
9.
Purinergic Signal ; 18(4): 515-528, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018534

RESUMO

Pulmonary vascular tone is modulated by nucleotides, but which P2 receptors mediate these actions is largely unclear. The aim of this study, therefore, was to use subtype-selective antagonists to determine the roles of individual P2Y receptor subtypes in nucleotide-evoked pulmonary vasodilation and vasoconstriction. Isometric tension was recorded from rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. Nucleotides evoked concentration- and endothelium-dependent vasodilation of precontracted tissues, but the concentration-response curves were shallow and did not reach a plateau. The selective P2Y2 antagonist, AR-C118925XX, inhibited uridine 5'-triphosphate (UTP)- but not adenosine 5'-triphosphate (ATP)-evoked relaxation, whereas the P2Y6 receptor antagonist, MRS2578, had no effect on UTP but inhibited relaxation elicited by uridine 5'-diphosphate (UDP). ATP-evoked relaxations were unaffected by the P2Y1 receptor antagonist, MRS2179, which substantially inhibited responses to adenosine 5'-diphosphate (ADP), and by the P2Y12/13 receptor antagonist, cangrelor, which potentiated responses to ADP. Both agonists were unaffected by CGS1593, an adenosine receptor antagonist. Finally, AR-C118925XX had no effect on vasoconstriction elicited by UTP or ATP at resting tone, although P2Y2 receptor mRNA was extracted from endothelium-denuded tissues using reverse transcription polymerase chain reaction with specific oligonucleotide primers. In conclusion, UTP elicits pulmonary vasodilation via P2Y2 receptors, whereas UDP acts at P2Y6 and ADP at P2Y1 receptors, respectively. How ATP induces vasodilation is unclear, but it does not involve P2Y1, P2Y2, P2Y12, P2Y13, or adenosine receptors. UTP- and ATP-evoked vasoconstriction was not mediated by P2Y2 receptors. Thus, this study advances our understanding of how nucleotides modulate pulmonary vascular tone.


Assuntos
Artéria Pulmonar , Vasodilatação , Ratos , Animais , Uridina Trifosfato/farmacologia , Difosfatos/farmacologia , Trifosfato de Adenosina/farmacologia , Difosfato de Uridina/farmacologia , Uridina/farmacologia , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2
10.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408820

RESUMO

The P2Y2 receptor (P2Y2R) is a G protein-coupled receptor that is activated by extracellular ATP and UTP, to a similar extent. This allows it to play roles in the cell's response to the (increased) release of these nucleotides, e.g., in response to stress situations, including mechanical stress and oxygen deprivation. However, despite its involvement in important (patho)physiological processes, the intracellular signaling induced by the P2Y2R remains incompletely described. Therefore, this study implemented a NanoBiT® functional complementation assay to shed more light on the recruitment of ß-arrestins (ßarr1 and ßarr2) upon receptor activation. More specifically, upon determination of the optimal configuration in this assay system, the effect of different (receptor) residues/regions on ßarr recruitment to the receptor in response to ATP or UTP was estimated. To this end, the linker was shortened, the C-terminal tail was truncated, and phosphorylatable residues in the third intracellular loop of the receptor were mutated, in either singly or multiply adapted constructs. The results showed that none of the introduced adaptations entirely abolished the recruitment of either ßarr, although EC50 values differed and time-luminescence profiles appeared to be qualitatively altered. The results hint at the C-terminal tail modulating the interaction with ßarr, while not being indispensable.


Assuntos
Trifosfato de Adenosina , Transdução de Sinais , Fosforilação , Uridina Trifosfato/farmacologia , beta-Arrestina 1 , beta-Arrestina 2/metabolismo , beta-Arrestinas
11.
Molecules ; 27(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566353

RESUMO

P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. The P2Y2 receptor subtype is expressed in a variety of cell types and plays an important role in physiological and pathophysiological processes such as inflammatory responses and neuropathic pain. Based on this, the P2Y2 has been identified as an important drug target. The specificity of current P2Y2 receptor modulators is relatively poor, and currently, specific and efficient P2Y2 receptor modulators and efficient screening strategies are lacking. In this study, a cell model based on calcium-activated chloride channels (CaCCs) was established that can detect changes in intracellular calcium concentrations and can be used to high-throughput screen for P2Y2 receptor-specific regulators. This screening strategy is suitable for screening of most G-protein-coupled receptor regulators that mediate increases in intracellular calcium signals. The cell model consists of three components that include the endogenously expressed P2Y2 receptor protein, the exogenously expressed calcium-activated chloride channel Anoctamin-1 (Ano1), and a yellow fluorescent protein mutant expressed within the cell that is highly sensitive to iodine ions. This model will allow for high-throughput screening of GPCR regulators that mediate increased intracellular calcium signaling using the calcium-activated transport of iodide ions by Ano1. We verified the ability of the model to detect intracellular calcium ion concentration using fluorescence quenching kinetic experiments by applying existing P2Y2 agonists and inhibitors to validate the screening function of the model, and we also evaluated the performance of the model in the context of high-throughput screening studies. The experimental results revealed that the model could sensitively detect intracellular calcium ion concentration changes and that the model was accurate in regard to detecting P2Y2 modulators. The resultant value of the Z-factor was 0.69, thus indicating that the model possesses good sensitivity and specificity.


Assuntos
Cálcio , Ensaios de Triagem em Larga Escala , Cálcio/metabolismo , Sinalização do Cálcio , Nucleotídeos/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo
12.
Mol Reprod Dev ; 88(11): 758-770, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34694051

RESUMO

Ovarian surface epithelium (OSE) is a cell monolayer surrounding the ovary; it is involved in the regulation of the ovulatory process and the genesis of ovarian carcinoma. However, intercellular messengers regulating signaling events, like proliferation in the OSE, have not been completely described. Purines have emerged as novel intercellular messengers in the ovary, in which expression of purinergic receptors has been reported in different cell types. In the present work, we described the functional expression of P2Y2 receptor (P2Y2R), a purinergic receptor widely associated with cell proliferation, in the OSE. The expression of P2Y2R by immunofluorescence and RT-PCR, and its functionality by Ca2+ recording was demonstrated in primary cultured OSE. Functional expression of P2Y2R was also exhibited in situ, by recording of intracellular Ca2+ release and detection of ERK phosphorylation after injection of a selective agonist into the ovarian bursa. Furthermore, P2Y2R activation with UTPγS, in situ, induced cell proliferation at 24 h, whereas continuous stimulation of P2Y2R during a complete estrous cycle significantly modified the size distribution of the follicular population. This is the first evidence of the functional expression of purinergic P2Y2R in the OSE and opens new perspectives on the roles played by purines in ovarian physiology.


Assuntos
Ovário , Animais , Proliferação de Células/fisiologia , Epitélio , Feminino , Camundongos , Fosforilação , Receptores Purinérgicos P2Y2/genética
13.
Cell Mol Life Sci ; 77(5): 885-901, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31278420

RESUMO

Purinergic P2 receptors are critical regulators of several functions within the vascular system, including platelet aggregation, vascular inflammation, and vascular tone. However, a role for ATP release and P2Y receptor signalling in angiogenesis remains poorly defined. Here, we demonstrate that blood vessel growth is controlled by P2Y2 receptors. Endothelial sprouting and vascular tube formation were significantly dependent on P2Y2 expression and inhibition of P2Y2 using a selective antagonist blocked microvascular network generation. Mechanistically, overexpression of P2Y2 in endothelial cells induced the expression of the proangiogenic molecules CXCR4, CD34, and angiopoietin-2, while expression of VEGFR-2 was decreased. Interestingly, elevated P2Y2 expression caused constitutive phosphorylation of ERK1/2 and VEGFR-2. However, stimulation of cells with the P2Y2 agonist UTP did not influence sprouting unless P2Y2 was constitutively expressed. Finally, inhibition of VEGFR-2 impaired spontaneous vascular network formation induced by P2Y2 overexpression. Our data suggest that P2Y2 receptors have an essential function in angiogenesis, and that P2Y2 receptors present a therapeutic target to regulate blood vessel growth.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/crescimento & desenvolvimento , Neovascularização Fisiológica/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Angiopoietina-2/biossíntese , Antígenos CD34/biossíntese , Células Cultivadas , Humanos , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Fosforilação/fisiologia , Agregação Plaquetária/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores CXCR4/biossíntese , Receptores Purinérgicos P2Y2/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
14.
BMC Musculoskelet Disord ; 22(1): 680, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380439

RESUMO

BACKGROUND: Skeletal muscle atrophy and fibrosis are pathological conditions that contribute to morbidity in numerous conditions including aging, cachexia, and denervation. Muscle atrophy is characterized as reduction of muscle fiber size and loss of muscle mass while muscle fibrosis is due to fibroblasts activation and excessive production of extracellular matrix. Purinergic receptor P2Y2 has been implicated in fibrosis. This study aims to elucidate the roles of P2Y2 in sleketal muscle atrophy and fibrosis. METHODS: Primary muscle fibroblasts were isolated from wild type and P2Y2 knockout (KO) mice and their proliferating and migrating abilities were assessed by CCK-8 and Transwell migration assays respectively. Fibroblasts were activated with TGF-ß1 and assessed by western blot of myofibroblast markers including α-SMA, CTGF, and collagen I. Muscle atrophy and fibrosis were induced by transection of distal sciatic nerve and assessed using Masson staining. RESULTS: P2Y2 KO fibroblasts proliferated and migrated significantly slower than WT fibroblasts with or without TGF-ß1.The proliferation and ECM production were enhanced by P2Y2 agonist PSB-1114 and inhibited by antagonist AR-C118925. TGF-ß1 induced fibrotic activation was abolished by P2Y2 ablation and inhibited by AKT, ERK, and PKC inhibitors. Ablation of P2Y2 reduced denervation induced muscle atrophy and fibrosis. CONCLUSIONS: P2Y2 is a promoter of skeletal muscle atrophy and activation of fibroblasts after muscle injury, which signaling through AKT, ERK and PKC. P2Y2 could be a potential intervention target after muscle injury.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Músculo Esquelético/patologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores Purinérgicos P2Y2/metabolismo , Animais , Células Cultivadas , Fibroblastos/patologia , Fibrose , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
15.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445644

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is considered a manifestation of metabolic syndrome (MS) and is characterized by the accumulation of triglycerides and a varying degree of hepatic injury, inflammation, and repair. Moreover, peroxisome-proliferator-activated receptors (PPARs) play a critical role in the pathophysiological processes in the liver. There is extensive evidence of the beneficial effect of polyphenols such as resveratrol (RSV) and quercetin (QRC) on the treatment of liver pathology; however, the mechanisms underlying their beneficial effects have not been fully elucidated. In this work, we show that the mechanisms underlying the beneficial effects of RSV and QRC against inflammation in liver damage in our MS model are due to the activation of novel pathways which have not been previously described such as the downregulation of the expression of toll-like receptor 4 (TLR4), neutrophil elastase (NE) and purinergic receptor P2Y2. This downregulation leads to a decrease in apoptosis and hepatic fibrosis with no changes in hepatocyte proliferation. In addition, PPAR alpha and gamma expression were altered in MS but their expression was not affected by the treatment with the natural compounds. The improvement of liver damage by the administration of polyphenols was reflected in the normalization of serum transaminase activities.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Síndrome Metabólica/complicações , Quercetina/farmacologia , Receptores Purinérgicos/metabolismo , Resveratrol/farmacologia , Animais , Antioxidantes/farmacologia , Citocinas/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos/genética
16.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073834

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic liver disease associated with obesity and insulin resistance. Activation of the purinergic receptor P2Y2R has been reported to promote adipogenesis, inflammation and dyslipidemia in adipose tissues in obese mice. However, the role of P2Y2R and its mechanisms in NAFLD remain unknown. We hypothesized that P2Y2R deficiency may play a protective role in NAFLD by modulating lipid metabolism in the liver. In this study, we fed wild type and P2Y2R knockout mice with a high-fat diet (HFD) for 12 weeks and analyzed metabolic phenotypes. First, P2Y2R deficiency effectively improved insulin resistance with a reduction in body weight and plasma insulin. Second, P2Y2R deficiency attenuated hepatic lipid accumulation and injury with reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Third, P2Y2R deficiency decreased the expression of fatty acid synthesis mediators (cluster of differentiation (CD36), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1)); and increased the expression of adipose triglyceride lipase (ATGL), a lipolytic enzyme. Mechanistically, P2Y2R deficiency increased the AMP-activated protein kinase (AMPK) activity to improve mitochondrial fatty acid ß-oxidation (FAO) by regulating acetyl-CoA carboxylase (ACC) and carnitine palmitoyltransferase 1A (CPT1A)-mediated FAO pathway. In addition, P2Y2R deficiency increased peroxisome proliferator-activated gamma co-activator-1α (PGC-1α)-mediated mitochondrial biogenesis. Conclusively, P2Y2R deficiency ameliorated HFD-induced hepatic steatosis by enhancing FAO through AMPK signaling and PGC-1α pathway, suggesting P2Y2R as a promising therapeutic target for NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Graxos/metabolismo , Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Acetil-CoA Carboxilase/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Peso Corporal , Antígenos CD36/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica , Ácido Graxo Sintases/metabolismo , Insulina/sangue , Resistência à Insulina/fisiologia , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Obesidade/metabolismo , Receptores Purinérgicos P2Y2/deficiência , Receptores Purinérgicos P2Y2/genética , Estearoil-CoA Dessaturase/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 318(6): H1559-H1569, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383993

RESUMO

Cerebrovascular dysfunction is a critical risk factor for the pathogenesis of Alzheimer's disease (AD). The purinergic P2Y2 receptor and endoplasmic reticulum (ER) stress are tightly associated with vascular dysfunction and the pathogenesis of AD. However, the protective effects of exercise training on P2Y2 receptor- and ER stress-associated cerebrovascular dysfunction in AD are mostly unknown. Control (C57BL/6, CON) and AD (APP/PS1dE9, AD) mice underwent treadmill exercise training (EX). 2-MeS-ATP-induced dose-dependent vasoreactivity was determined by using a pressurized posterior cerebral artery (PCA) from 10-12-mo-old mice. Human brain microvascular endothelial cells (HBMECs) were exposed to laminar shear stress (LSS) at 20 dyn/cm2 for 30 min, 2 h, and 24 h. The expression of P2Y2 receptors, endothelial nitric oxide synthase (eNOS), and ER stress signaling were quantified by Western blot analysis. Notably, exercise converted ATP-induced vasoconstriction in the PCA from AD mice to vasodilation in AD+EX mice to a degree commensurate to the vascular reactivity observed in CON mice. Exercise reduced the expression of amyloid peptide precursor (APP) and increased the P2Y2 receptor and Akt/eNOS expression in AD mice brain. Mechanistically, LSS increased the expression of both P2Y2 receptor and eNOS protein in HBMECs, but these increases were blunted by a P2Y2 receptor antagonist in HBMECs. Exercise also reduced the expression of aberrant ER stress markers p-IRE1, p/t-eIF2α, and CHOP, as well as Bax/Bcl-2, in AD mice brain. Collectively, our results demonstrate for the first time that exercise mitigates cerebrovascular dysfunction in AD through modulating P2Y2 receptor- and ER stress-dependent endothelial dysfunction.NEW & NOTEWORTHY A limited study has investigated whether exercise training can improve cerebrovascular function in Alzheimer's disease. The novel findings of the study are that exercise training improves cerebrovascular dysfunction through enhancing P2Y2 receptor-mediated eNOS signaling and reducing ER stress-associated pathways in AD. These data suggest that exercise training, which regulates P2Y2 receptor and ER stress in AD brain, is a potential therapeutic strategy for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Circulação Cerebrovascular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Condicionamento Físico Animal/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Cerebral Posterior/metabolismo , Artéria Cerebral Posterior/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Mol Cell Biochem ; 466(1-2): 91-102, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989367

RESUMO

Purine signaling pathway plays an important role in inflammation and tissue damage. To investigate the role of purine signaling pathway in acute alcoholic liver injury and chronic alcoholic liver fibrosis, we replicated two animal models and two cellular models. We found that body weights, liver indexes, serum biochemical parameters, serum fibrosis indexes, and pathological and immunohistochemical results had significant changes in two treatment groups compared with two control groups. In addition, gene expressions of purine receptors, inflammatory cytokines, fibrogenic cytokines, and inflammasomes increased obviously in two animal models and two cellular models. Furthermore, purine receptor inhibitors could significantly inhibit protein expressions of purine receptors and reduce protein expressions of inflammatory cytokines, fibrogenic cytokines, and inflammasomes. Besides, P2X7R small interfering ribonucleic acid (siRNA) had the same effects. Meanwhile, we detected protein expressions of inflammatory cytokines secreted by inflammasomes, and we found that purine receptor-mediated inflammasomes activation was a key event in the process of chronic alcoholic liver fibrosis. In summary, this study shows that inhibition of purine receptors can alleviate acute alcoholic liver injury and chronic alcoholic liver fibrosis in mice. Therefore, purine receptor is a potential new target for the treatment of acute alcoholic liver injury and chronic alcoholic fibrosis.


Assuntos
Proliferação de Células , Citocinas/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Purinas/metabolismo , Transdução de Sinais , Animais , Células Estreladas do Fígado/patologia , Inflamação/metabolismo , Inflamação/patologia , Hepatopatias Alcoólicas/patologia , Camundongos , Receptores Purinérgicos P2X7/metabolismo
19.
Purinergic Signal ; 16(1): 85-96, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32043211

RESUMO

The improvement of cryopreserved oocyte survival is imperative for the preservation of female fertility. In this study, we investigate whether P2Y2 receptors (P2Y2R) can be directly implicated in calcium (Ca2+) homeostasis misbalances observed during the cryopreservation process of cumulus oocyte complexes (COC). Firstly, RNA was extracted from bovine immature and mature oocytes and cumulus cells and real-time PCR performed to identify P2Y2R transcripts (experiment 1). Changes in intracellular calcium concentration [Ca2+]i of mature COC and oocytes (experiment 2) were measured upon exposure to cryoprotectants (CPA), UTP (P2Y2R stimulator, 100 µM), and/or suramin (P2Y2R inhibitor, 100 and 300 µM). The functional role of P2Y2R was investigated by analyzing the effect on oocyte viability of its modulation prior and during oocyte exposure to CPA (experiment 3). Mature COC were randomly divided into groups, and exposed to CPA and different P2Y2 modulators. Oocytes' viability, cortical granules location, and competence for development were assessed. Results showed that P2Y2R mRNAs are expressed in both oocytes and cumulus cells. Stimulation with UTP and CPA led to [Ca2+]i increase, and this effect was totally or partially blocked by suramin (P2Y2R inhibitor). Oocyte exposure to CPA and UTP reduced embryo rates compared with control and suramin100µM (P ≤ 0.04). The observed enhanced premature zona hardening in oocytes exposed to CPA (P = 0.04) and UTP (P = 0.005) stimulus was inhibited by suramin 100 µM. In conclusion, inhibition of P2Y2R during cryoprotectant exposure reduces premature intracellular Ca2+ release and significantly improves the developmental competence of exposed bovine oocytes.


Assuntos
Cálcio/metabolismo , Crioprotetores/toxicidade , Células do Cúmulo/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Receptores Purinérgicos P2Y2/metabolismo , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Criopreservação/métodos , Células do Cúmulo/metabolismo , Feminino , Oócitos/efeitos dos fármacos , Oócitos/metabolismo
20.
Purinergic Signal ; 16(3): 453-461, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32862324

RESUMO

Uridine 5'-triphosphate (UTP) has an important role as an extracellular signaling molecule that regulates inflammation, angiogenesis, and vascular tone. While chronic hypertension has been shown to promote alterations in arterial vascular tone regulation, carotid artery responses to UTP under hypertensive conditions have remained unclear. The present study investigated carotid artery responses to UTP in spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY). Accordingly, our results found that although UTP promotes concentration-dependent relaxation in isolated carotid artery segments from both SHR and WKY after pretreatment with phenylephrine, SHR exhibited significantly lower arterial relaxation responses compared with WKY. Moreover, UTP-induced relaxation was substantially reduced by endothelial denudation and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine in both SHR and WKY. The difference in UTP-induced relaxation between both groups was abolished by the selective P2Y2 receptor antagonist AR-C118925XX and the cyclooxygenase (COX) inhibitor indomethacin but not by the thromboxane-prostanoid receptor antagonist SQ29548. Furthermore, we detected the release of PGE2, PGF2α, and PGI2 in the carotid arteries of SHR and WKY, both at baseline and in response to UTP. UTP administration also increased TXA2 levels in WKY but not SHR. Overall, our results suggest that UTP-induced relaxation in carotid arteries is impaired in SHR perhaps due to impaired P2Y2 receptor signaling, reductions in endothelial NO, and increases in the levels of COX-derived vasoconstrictor prostanoids.


Assuntos
Artérias Carótidas/efeitos dos fármacos , Hipertensão/fisiopatologia , Uridina Trifosfato/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Artérias Carótidas/fisiopatologia , Furanos/farmacologia , Piperidinas/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Tetrazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA