Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4336-4345, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567915

RESUMO

This study demonstrates the conceptual design and fabrication of a vertically integrated monolithic (VIM) neuromorphic device. The device comprises an n-type SnO2 nanowire bottom channel connected by a shared gate to a p-type P3HT nanowire top channel. This architecture establishes two distinct neural pathways with different response behaviors. The device generates excitatory and inhibitory postsynaptic currents, mimicking the corelease mechanism of bilingual synapses. To enhance the signal processing efficiency, we employed a bipolar spike encoding strategy to convert fluctuating sensory signals to spike trains containing positive and negative pulses. Utilizing the neuromorphic platform for synaptic processing, physiological signals featuring bidirectional fluctuations, including electrocardiogram and breathing signals, can be classified with an accuracy of over 90%. The VIM device holds considerable promise as a solution for developing highly integrated neuromorphic hardware for healthcare and edge intelligence applications.


Assuntos
Nanofios , Sinapses
2.
Small ; 20(38): e2400874, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38794876

RESUMO

To push the commercialization of the promising photovoltaic technique of perovskite solar cells (PSCs), the three-element golden law of efficiency, stability, and cost should be followed. As the key component of PSCs, hole-transporting materials (HTMs) involving widely-used organic semiconductors such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) or poly(triarylamine) (PTAA) usually suffer high-cost preparation and low operational stability. Fortunately, the studies on the classical p-type polymer poly(3-hexylthiophene) (P3HT) as an alternative HTM have recently sparked a broad interest due to its low-cost synthesis, excellent batch-to-batch purity, superior hole conductivity as well as controllable and stable film morphology. Despite this, the device efficiency still lags behind P3HT-based PSCs mainly owing to the mismatched energy level and poor interfacial contact between P3HT and the perovskite layer. Hence, in this review, the study timely summarizes the developed strategies for overcoming the corresponding issues such as interface engineering, morphology regulation, and formation of composite HTMs from which some critical clues can be extracted to provide guidance for further boosting the efficiency and stability of P3HT-based devices. Finally, in the outlook, the future research directions either from the viewpoint of material design or device engineering are outlined.

3.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894449

RESUMO

In the present paper the humidity sensing properties of regioregular rr-P3HT (poly-3-hexylthiophene) polymer films is investigated by means of surface acoustic wave (SAW) based sensors implemented on LiNbO3 (1280 Y-X) and ST-quartz piezoelectric substrates. The polymeric layers were deposited along the SAW propagation path by spray coating method and the layers thickness was measured by atomic force microscopy (AFM) technique. The response of the SAW devices to relative humidity (rh) changes in the range ~5-60% has been investigated by measuring the SAW phase and frequency changes induced by the (rh) absorption in the rr-P3HT layer. The SAW sensor implemented onto LiNbO3 showed improved performance as the thickness of the membrane increases (from 40 to 240 nm): for 240 nm thick polymeric membrane a phase shift of about -1.2 deg and -8.2 deg was measured for the fundamental (~78 MHz operating frequency) and 3rd (~234 MHz) harmonic wave at (rh) = 60%. A thick rr-P3HT film (~600 nm) was deposited onto the quartz-based SAW sensor: the sensor showed a linear frequency shift of ~-20.5 Hz per unit (rh) changes in the ~5-~50% rh range, and a quite fast response (~5 s) even at low humidity level (~5% rh). The LiNbO3 and quartz-based sensors response was assessed by using a dual delay line system to reduce unwanted common mode signals. The simple and cheap spray coating technology for the rr-P3HT polymer films deposition, complemented with fast low level humidity detection of the tested SAW sensors (much faster than the commercially available Michell SF-52 device), highlight their potential in a low-medium range humidity sensing application.

4.
Molecules ; 29(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39202807

RESUMO

The phonon-related properties of crystalline polymers are highly relevant for various applications. Their simulation is, however, particularly challenging, as the systems that need to be modeled are often too extended to be treated by ab initio methods, while classical force fields are too inaccurate. Machine-learned potentials parametrized against material-specific ab initio data hold the promise of being extremely accurate and also highly efficient. Still, for their successful application, protocols for their parametrization need to be established to ensure an optimal performance, and the resulting potentials need to be thoroughly benchmarked. These tasks are tackled in the current manuscript, where we devise a protocol for parametrizing moment tensor potentials (MTPs) to describe the structural properties, phonon band structures, elastic constants, and forces in molecular dynamics simulations for three prototypical crystalline polymers: polyethylene (PE), polythiophene (PT), and poly-3-hexylthiophene (P3HT). For PE, the thermal conductivity and thermal expansion are also simulated and compared to experiments. A central element of the approach is to choose training data in view of the considered use case of the MTPs. This not only yields a massive speedup for complex calculations while essentially maintaining DFT accuracy, but also enables the reliable simulation of properties that, so far, have been entirely out of reach.

5.
Chemistry ; 29(22): e202300025, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36691919

RESUMO

We prepared organic polymer poly-3-hexylthiophene (p3ht) nanoparticles (NPs) and graphene oxide (GO)/reduced graphene oxide (RGO) composites p3ht NPs-GO/RGO by using the reprecipitation method. We demonstrated that GO/RGO could improve the ordering and planarity of p3ht chains as well as the formation of p3ht NPs, and confirmed the effects of GO/RGO on the fluorescence and carrier transport dynamics of p3ht NPs by using femtosecond fluorescence upconversion and transient absorption (TA) techniques. Ultrafast electron transfer (∼1 ps) between GO/RGO and p3ht NPs quenched the fluorescence of p3ht NPs, indicating excellent properties of p3ht NPs-GO/RGO as the charge transfer complexes. Efficient electron transfer may promote the applications of p3ht NPs-GO/RGO composites in organic polymer solar cells and photocatalysis. Moreover, RGO had stronger interfacial interactions and more matched conduction band energy levels with p3ht NPs than GO did, which implied that p3ht NPs-RGO might have greater application values than p3ht NPs-GO.

6.
Nanotechnology ; 34(18)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36724502

RESUMO

Ag2S quantum dot (QD) photodetectors (PDs) have attracted a lot of attention in the field of imaging system and optical communication. However, the current Ag2S PDs mainly works in the near-infrared band, and its detection ability in the visible band remains to be strengthened. In this paper, we used poly(3-hexylthiophene) (P3HT) with high carrier mobility and Ag2S QDs to construct heterojunction PD. Stronger absorption in blends with polymer P3HT compared to single Ag2S QDs. The optical absorption spectra show that the Ag2S/P3HT has strong light absorption peak at 394 and 598 nm. The results show that P3HT significantly enhances the absorption of Ag2S QDs from the visible to near-infrared band. The output characteristics, transfer characteristics and fast switching capability of the device at 405 nm, 532 nm and 808 nm were tested. The device has the responsivity of 6.05 A W-1, 83.72 A W-1and 37.31 A W-1under 405 nm, 532 nm and 808 nm laser irradiation. This work plays an important role in improving the detection performance of Ag2S QDs and broadening its applications in photoelectric devices for weak light and wide spectrum detection.

7.
Macromol Rapid Commun ; 44(23): e2300338, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585284

RESUMO

The molecular order and vertical component distribution are critical to enhance the charge transport in layer-by-layer (LbL) processed active layer. However, the excessive inter-diffusion between donor and acceptor layers during LbL processing irrepressibly reduces their ordered packing. Herein, a novel tactic to optimize the molecular order and vertical morphology of the active layer through suppressing the deep penetration of (5Z,5'Z)-5,5'-((7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6 -b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene)) bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR) to poly(3-hexylthiophene) (P3HT) film during LbL processing is proposed. This is enabled by inducing the formation of P3HT nanofibers through ultraviolet (UV) irradiation and solution aging. During the LbL processing, these nanofibers with high crystallinity reduce the damage of O-IDTBR solution to P3HT film and restrict the penetration of O-IDTBR into P3HT matrix. As a result, the P3HT nanofibers are preserved and the degree of vertical phase separation is enlarged in the LbL-processed film. Meanwhile, the molecular order of both components is enhanced. The resulting morphology that featured as intertwined P3HT nanofibers/O-IDTBR network efficiently promotes charge transport and extraction, boosting the power conversion efficiency (PCE) of the devices from 6.70 ± 0.12% to 7.71 ± 0.10%.


Assuntos
Nanofibras , Tiadiazóis , Bandagens , Difusão , Raios Ultravioleta
8.
Small ; 18(3): e2103804, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825447

RESUMO

Long coherence lengths (CLs) of crystals and proper intermixed phase amount guarantee charge transport and exciton dissociate efficiently, which is crucial for organic solar cells (OSCs) to achieve high device performance. However, extending CLs usually reduces the intermixed phase, leading to an insufficient interface for exciton dissociation. Herein, a strategy using a binary polymer with different molecular weights as donor is employed, that is, poly(3-hexylthiophene-2,5-diyl) (P3HT) with high (P3HT-H) and low (P3HT-L) molecular weight are blended as donor, and (5Z,5'Z)-5,5'-(((4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR) is used as acceptor. In kinetics, the entanglements of P3HT-H are relieved due to the higher molecular diffusivity of P3HT-L. In thermodynamics, the miscibility of P3HT-L/O-IDTBR, P3HT-H/O-IDTBR, and P3HT-L/P3HT-H blends increases in turn. Hence, P3HT forms a more ordered structure with longer CLs after adding P3HT-L, which also drives O-IDTBR dispersed in P3HT crystalline regions diffuse to the O-IDTBR crystalline regions to further self-organize. Consequently, the CLs of both P3HT and O-IDTBR are extended, while keeping the intermixed phase amount proper. The optimized microstructure boosts device performance from 7.03% to 7.80%, which is one of the highest values reported for P3HT/O-IDTBR blends. This is a novel way to solve the conflict mentioned above, which may provide guidance to finely regulating the morphology of the active layer.


Assuntos
Energia Solar , Peso Molecular , Polímeros/química
9.
Sci Technol Adv Mater ; 23(1): 619-632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212681

RESUMO

Poly(3-hexylthiophene) (P3HT) is a typical conducting polymer widely used in organic thin-film transistors, polymer solar cells, etc., due to good processability and remarkable charging carrier and hole mobility. It is known that the ordered structure assembled by π-conjugated P3HT chains could promote the performance of electronic devices. Interfacial and confined molecular-assembly is one effective way to generate an ordered structure by tuning surface geometry and substrate interaction. Great efforts have been made to investigate the molecular chain assembly of P3HT on a curved surface that is confined to different geometry. In this report, we review the recent advances of the interfacial chain assembly of P3HT in a flat or curved confined space and its application to organic electronic devices. In principle, this interfacial assembly of P3HT at a nanoscale could improve the electronic properties, such as the current transport, power conversion efficiency, etc. Therefore, this review on interfacial and confined assembly of P3HT could give general implications for designing high-performance organic electronic devices.

10.
Nanotechnology ; 32(38)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34082410

RESUMO

Self-powered photodetectors have grown as inevitable members of the optoelectronic device family. However, it is still challenging to achieve self-powered photodetection with good responsivity in the visible spectrum region. Herein, we report solution-processable poly(3-hexylthiophene) (P3HT)-molybdenum disulfide (MoS2) organic-inorganic hybrid material, which can be used as the active layer in self-powered photodetectors. The morphological and structural properties of the synthesized P3HT-MoS2hybrid material has been discussed using atomic force microscopy and transmission electron microscopy, respectively. The hybrid material loaded with 1 wt% MoS2has shown an enhancement in the self-assembly of polymer in the form of fibrillar formation and excellent structural features in terms ofπ-conjugation. The self-powered photodetectors have been fabricated in indium tin oxide (ITO) coated glass/P3HT-MoS2/Al configuration. The merit of P3HT-MoS2hybrid photodetectors is measured under the illumination of 470, 530, and 627 nm light in ambient conditions. P3HT-MoS2photodetectors show significantly higher responsivity and detectivity. The photo responsivity and detectivity in P3HT-MoS2devices are found to be 271.2 mA W-1and 4.4 × 1010jones at zero bias, respectively, for 470 nm light with the optical power density of 74.1µW cm-2. Furthermore, the photocurrent switching behaviour at periodic illuminations of 1 Hz has also been examined for P3HT-MoS2self-powered photodetectors.

11.
Luminescence ; 36(3): 761-768, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386694

RESUMO

In the present work, optical, electrical, and photophysical properties of poly(3-hexylthiophen)/silver sulphide (P3HT/Ag2 S) nanocomposites thin films were investigated. New amorphous dispersion formula was used to fit the experimental ellipsometer data and it was observed that the both refractive index (n) and absorption index (k) increased for hybrid films compared with pure P3HT film. The photophysical properties of fabricated films were examined by recording the photoluminescence (PL) and time resolved fluorescence spectra. The PL quenching in hybrid films signalled the formation of a charge transfer complex between host (P3HT) and guest (Ag2 S). The fluorescence average life time was noted to drop to 94 ps for hybrid P3HT:Ag2 S 1:2 film compared with 126 ps for pristine P3HT. Finally, the electrical properties of fabricated films were measured using the Hall effect systems. The surface resistivity (ρ) of pure P3HT thin films was found to be 9.70 × 104 Ω.cm, which decreased slightly for Ag2 S/P3HT hybrid films.


Assuntos
Nanopartículas , Prata
12.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012907

RESUMO

In this article, we compare two different kinds of commercial light-emitting diodes (LEDs) in transmission and organic photodetectors based on poly(3-hexylthiophene) (P3HT) and a phenyl-C61-butyric acid methyl ester (PCBM) blend used as active layer in reception. Photovoltaic cells based on massive heterojunctions of semiconductor polymers have focused the attention of researchers due to their several potential advantages over their inorganic counterparts, such as their simplicity, low cost, and ability to process large area devices, even on flexible substrates. Furthermore, in logistics, storage management systems require the implementation of technological solutions that allow the control of merchandise in real time by means of light-emitting diode signals that send information about the product. However, the slow response time of these organic photodetectors should not be critical for this application, where the light intensity changes are very slow, which limits the speed of data transmission compared to inorganic based systems that use wireless optical communications. Finally, we show a low-cost visible light communication system based on organic photodetectors with a frame based on on-off keying with Manchester encoding to support device-to-device connections.

13.
Nano Lett ; 19(1): 471-476, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30517010

RESUMO

Organic semiconductor-insulator blend films are widely explored for high-performance electronic devices enabled by unique phase-separation and self-assembly phenomena at key device interfaces. Here we report the first demonstration of high-performance hybrid diodes based on p- n junctions formed by a p-type poly(3-hexylthiophene) (P3HT)-poly(methyl methacrylate) (PMMA) blend and n-type indium-gallium-zinc oxide (IGZO). The thin film morphology, microstructure, and vertical phase-separation behavior of the P3HT films with varying contents of PMMA are systematically analyzed. Microstructural and charge transport evaluation indicates that the polymer insulator component positively impacts the morphology, molecular orientation, and effective conjugation length of the P3HT films, thereby enhancing the heterojunction performance. Furthermore, the data suggest that PMMA phase segregation creates a continuous nanoscopic interlayer between the P3HT and IGZO layers, playing an important role in enhancing diode performance. Thus, the diode based on an optimal P3HT-PMMA blend exhibits a remarkable 10-fold increase in forward current versus that of a neat P3HT diode, yielding an ideality factor value as low as 2.5, and a moderate effective barrier height with an excellent rectification ratio. These results offer a new approach to simplified manufacturing of low-cost, large-area hybrid inorganic-organic electronics technologies.

14.
Sensors (Basel) ; 19(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875845

RESUMO

The dynamic response of gas sensors based on poly(3-hexylthiophene) (P3HT) nanofibers(NFs) to gaseous acetone was assessed using a setup based on flow-injection analysis, aimed atemulating actual breath exhalation. The setup was validated by using a commercially available sensor.The P3HT NFs sensors tested in dynamic flow conditions showed satisfactory reproducibility down toabout 3.5 ppm acetone concentration, a linear response over a clinically relevant concentration range(3.5-35 ppm), excellent baseline recovery and reversibility upon repeated exposures to the analyte,short pulse rise and fall times (less than 1 s and about 2 s, respectively) and low power consumption(few nW), with no relevant response to water. Comparable responses' decay times under eithernitrogen or dry air suggest that the mechanisms at work is mainly attributable to specific analytesemiconductingpolymer interactions. These results open the way to the use of P3HT NFs-basedsensing elements for the realization of portable, real-time electronic noses for on-the-fly exhaledbreath analysis.

15.
Int J Mol Sci ; 20(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151170

RESUMO

Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells of the retina responsible for transduction of visual signals from the retina to the brain cortex, and is often degenerated in various blindness-causing retinal diseases. The organic photovoltaic materials such as poly-3-hexylthiophene (P3HT) can generate electric current upon illumination with light of the visible spectrum, and possesses several advantageous properties, including light weight, flexibility and high biocompatibility, which makes them a highly promising tool for electric stimulation of cells in vitro and in vivo. In this study, we tested the ability to generate photocurrent by several formulations of blend (bulk heterojunction) of P3HT (which is electron donor material) with several electron acceptor materials, including Alq3 and bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2). We found that the photovoltaic device based on bulk heterojunction of P3HT with Bebq2 could generate photocurrent when illuminated by both green laser and visible spectrum light. We tested the growth and differentiation capacity of human induced pluripotent stem cells (hiPSC)-derived RGCs when grown in interface with such photostimulated device, and found that they were significantly increased. The application of P3HT:Bebq2-formulation of photovoltaic device has a great potential for developments in retinal transplantation, nerve repair and tissue engineering approaches of treatment of retinal degeneration.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Compostos Organosselênicos , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Imunofluorescência , Humanos , Compostos Organosselênicos/química , Polímeros , Esferoides Celulares
16.
Sensors (Basel) ; 18(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558448

RESUMO

The detection and concentration measurements of low concentrations of nitrogen dioxide (NO2) are important because of its negative effects on human health and its application in many fields of industry and safety systems. In our approach, conducting graft copolymers based on the poly(3-hexylthiophene) (P3HT) conducting polymer and other side-chains, polyethylene glycol (PEG) and dodec-1-en, grafted on a poly(methylhydrosiloxane) backbone, were investigated. The grafts containing PEG (PEGSil) and dodec-1-en (DodecSil) in two variants, namely, fractions with shorter (hexane fraction -H) and longer (chloroform fraction -CH) side-chains of P3HT, were tested as receptor structures in NO2 gas sensors. Their responses to NO2, within the concentration range of 1-20 ppm, were investigated in an nitrogen atmosphere at different operating temperatures-room temperature (RT) = 25 °C, 50 °C, and 100 °C. The results indicated that both of the copolymers with PEG side-chains had higher responses to NO2 than the materials with dodec-1-en side-chains. Furthermore, the results indicated that, in both cases, H fractions were more sensitive than CH fractions. The highest response to 1 ppm of NO2, from the investigated graft copolymers, had PEGSil H, which indicated a response of 1330% at RT and 1980% at 100 °C. The calculated lower-limit of the detection of this material is lower than 300 ppb of NO2 at 100 °C. This research indicated that graft copolymers of P3HT had great potential for low temperature NO2 sensing, and that the proper choice of other side-chains in graft copolymers can improve their gas sensing properties.

17.
J Nanosci Nanotechnol ; 17(1): 467-73, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29624322

RESUMO

Herein, we report the fabrication and characterization of Camphor Sulfonic Acid (CSA) doped Poly(3-hexylthiophene) (P3HT) nanofilms prepared at different substrate temperature on glass by simple wire bar coating method. Spectroscopic, optic, structural and electrical properties of the prepared nanofilms were characterized by atomic force microscopy (AFM), UV-Visible spectroscopy, fluorescence spectroscopy, X-ray diffraction, NKD spectroscopy, SEM and DC electrical measurements. The detailed electrical characterizations revealed that the conductivity of the P3HT nanofilms increased when the films are doped with CSA and the conductivity increased from 5.89×10⁻5 S/cm to 1.39 × 10⁻4 S/cm for 40 °C preparation temperature. Thus, it was confirmed that the substrate temperature plays an important role on the film structure and spectroscopic properties. Additionally CSA-doping changes the optical properties, especially when the films prepared at 40 °C.

18.
J Nanosci Nanotechnol ; 17(1): 450-53, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29624301

RESUMO

We have investigated the enhancement absorption light and luminescence quenching properties of the hybrid bulk heterojunction systems which were fabricated using poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV); poly(3-hexylthiophene) (P3HT); fullerene derivative 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6] C61 (PCBM) and TiO2 nanocrystals. The optimized material showed a broad absorption in the region of 350 to 670 nm and the luminescence quenching higher 85%. The obtained results provide further insight into photophysics of the heterojunction system and device performance improvement by using this system as an active layer.

19.
Molecules ; 22(9)2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28927009

RESUMO

A synthetic method that taps into the facile Lewis base (LB)→Lewis acid (LA) adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene) (P3HT) macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC) LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells.


Assuntos
Fulerenos/química , Ácidos de Lewis/química , Bases de Lewis/química , Tiofenos/química , Carbono/química , Transporte de Elétrons , Imidazóis/química , Espectroscopia de Ressonância Magnética/métodos , Transição de Fase , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Termodinâmica
20.
Macromol Rapid Commun ; 37(3): 203-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26605504

RESUMO

The structure of P3HT in P3HT:PCBM films is examined on a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT: PSS) substrate subjected to cryo-cooling to low temperature (-143 °C) followed by gradual heating to 50 °C. The behavior of these systems is examined in the absence and presence of an Al electrode on top of the P3HT:PCBM film. At temperatures below -10 °C, only the type-I phase of P3HT is observed. However, the type-II phase of P3HT starts to form near -10 °C, in both the presence and absence of the Al layer. In the system without an Al layer, the type-II phase disappears at 30 °C, but this phase persists to 50 °C in the presence of the Al layer. Concomitant with the formation of the type-II phase, a 1:3 ordered P3HT type-II (1/3,0,0) superlattice peak emerged. The type-II domains tend to form near the Al electrode layer and show a higher degree of alignment than the type-I crystals.


Assuntos
Temperatura , Tiofenos/química , Cristalização , Ésteres/química , Espalhamento a Baixo Ângulo , Solventes/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA