Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell ; 81(14): 3018-3030.e5, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102106

RESUMO

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.


Assuntos
Reparo do DNA/genética , DNA/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Animais , Linhagem Celular , Quebras de DNA de Cadeia Simples , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica/efeitos dos fármacos
2.
Mol Cell ; 80(5): 862-875.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275888

RESUMO

The anti-tumor potency of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) has been linked to trapping of PARP1 on damaged chromatin. However, little is known about their impact on PARP2, an isoform with overlapping functions at DNA lesions. Whether the release of PARP1/2 from DNA lesions is actively catalyzed by molecular machines is also not known. We found that PARPis robustly trap PARP2 and that the helicase ALC1 (CHD1L) is strictly required for PARP2 release. Catalytic inactivation of ALC1 quantitatively traps PARP2 but not PARP1. ALC1 manipulation impacts the response to single-strand DNA breaks through PARP2 trapping, potentiates PARPi-induced cancer cell killing, and mediates synthetic lethality upon BRCA deficiency. The chromatin remodeler ALC1 actively drives PARP2 turnover from DNA lesions, and PARP2 contributes to the cellular responses of PARPi. This suggests that disrupting the ATP-fueled remodeling forces of ALC1 might enable therapies that selectively target the DNA repair functions of PARPs in cancer.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas/genética
3.
J Biol Chem ; 299(12): 105397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898399

RESUMO

ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.


Assuntos
Instabilidade Genômica , Poli(ADP-Ribose) Polimerase-1 , Humanos , Adenosina Difosfato Ribose , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais
4.
Curr Oncol Rep ; 24(11): 1619-1631, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931885

RESUMO

PURPOSE OF REVIEW: We highlight the clinical development of Poly (ADP-Ribose) polymerase (PARP) inhibitors in prostate cancer. RECENT FINDINGS: Approximately 10 to 30% of metastatic prostate cancer patients carry germline or somatic mutations in DNA repair pathways. BRCA2 is the most commonly mutated gene in DNA damage repair pathways. Because of its critical function in homologous recombination repair (HRR) machinery, deleterious BRCA2 mutation enables synthetic lethality to a PARP inhibitor. Olaparib demonstrated clinical benefit in patients with deleterious mutations in HRR-related genes and most clearly in patients with BRCA2 mutations. Olaparib received the US FDA approval or mCRPC patients with a qualifying HRR gene mutation in May 2020. Rucaparib received an accelerated FDA approval for patients with BRCA1- or BRCA2-mutated mCRPC based on 43% objective response rate in a phase II study. To expand the application of a PARP inhibitor, several trials have evaluated various combination strategies with an androgen receptor signaling inhibitor, immunotherapy, radium-223, and others. While no PARP inhibitor combination regimen has been approved, promising data from a PARP inhibitor and an ASI combination have been reported. PARP inhibitor represents a standard treatment for patient with mCRPC with germline or somatic mutations in BRCA2 and other HRR pathway genes.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos , Ribose/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Antineoplásicos/uso terapêutico , Difosfato de Adenosina/uso terapêutico , Ensaios Clínicos Fase II como Assunto
5.
Future Oncol ; 13(4): 307-320, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27739325

RESUMO

Veliparib is an orally administered poly(ADP-ribose) polymerase inhibitor that is being studied in Phase I-III clinical trials, including Phase III studies in non-small-cell lung cancer, ovarian cancer and breast cancer. Tumor cells with deleterious BRCA1 or BRCA2 mutations are deficient in homologous recombination DNA repair and are intrinsically sensitive to platinum therapy and poly(ADP-ribose) polymerase inhibitors. We describe herein the design and rationale of a Phase II trial investigating whether the addition of veliparib to temozolomide or carboplatin/paclitaxel provides clinical benefit over carboplatin/paclitaxel with placebo in patients with locally recurrent or metastatic breast cancer harboring a deleterious BRCA1 or BRCA2 germline mutation (Trial registration: EudraCT 2011-002913-12, NCT01506609).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Protocolos Clínicos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacocinética , Neoplasias da Mama/patologia , Carboplatina/administração & dosagem , Carboplatina/farmacocinética , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Dacarbazina/farmacocinética , Monitoramento de Medicamentos , Feminino , Humanos , Modelos Estatísticos , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Projetos de Pesquisa , Tamanho da Amostra , Temozolomida
6.
Semin Oncol ; 51(1-2): 2-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37714792

RESUMO

Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.

7.
Eur J Med Chem ; 271: 116405, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678823

RESUMO

PARPi have been explored and applied in the treatment of various cancers with remarkable efficacy, especially BRCA1/2 mutated ovarian, breast, prostate, and pancreatic cancers. However, PARPi renders inevitable drug resistance and showed high toxicity because of PARP-Trapping with long-term clinic tracking. To overcome the drug resistance and the high toxicity of PARPi, many novel methods have been developed including PROTACs. Being an event-driven technology, PROTACs needs a high affinity, low toxicity warhead with no steric hindrance in binding process. Veliparib shows the lowest PARP-Trapping effect but could hardly to be the warhead of PROTACs because of the strong steric hindrance. Other PARP1 inhibitors showed less steric hindrance but owns high PARP-Trapping effect. Thus, the development of novel warhead with high PARP1 affinity, low PARP1-Trapping, and no steric hindrance would be valuable. In this work, we reserved benzimidazole as the motif to reserve the low PARP1-Trapping effect and substituted the pyrrole by aromatic ring to avoiding the steric hindrance in PARP1 binding cave. Thus, a series of benzimidazole derivates were designed and synthesized, and some biological activities in vitro were evaluated including the inhibition for PARP1 enzyme and the PARP-Trapping effect using MDA-MB-436 cell line. Results showed that the compound 19A10 has higher PARP1 affinity(IC50 = 4.62 nM)) and similar low PARP-Trapping effect compared with Veliparib(IC50 (MDA-MB-436) >100 µM). Docking study showed that the compound 19A10 could avoiding the steric hindrance which was much better than Veliparib. So, the compound 19A10 could potentially be a perfect warhead for PARP1 degraders. Besides, because of the depletion of the PARP1 and the decreasing of the binding capability, we suppose that the PROTACs using 19A10 as the warhead would be no-PARP-Trapping effect. Furthermore, QSAR study showed that to develop novel compounds with high PARP1 binding affinity and low PARP-Trapping, we can choose the skeleton with substituent R1H, R2 = piperiazine, and R3 with large tPSA. And, if we want to develop the compounds with high PARP1 binding affinity and high PARP-Trapping which can possibly improve the lethality against tumor cells, we can choose the skeleton with substituent R1F, R2 = 3-methy-piperiazine, and R3 with large tPSA.


Assuntos
Antineoplásicos , Benzimidazóis , Ensaios de Seleção de Medicamentos Antitumorais , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
8.
Cell Chem Biol ; 31(7): 1373-1382.e10, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38262416

RESUMO

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of cancer drugs that enzymatically inhibit PARP activity at sites of DNA damage. Yet, PARPi function mainly by trapping PARP1 onto DNA with a wide range of potency among the clinically relevant inhibitors. How PARPi trap and why some are better trappers remain unknown. Here, we show trapping occurs primarily through a kinetic phenomenon at sites of DNA damage that correlates with PARPi koff. Our results suggest PARP trapping is not the physical stalling of PARP1 on DNA, rather the high probability of PARP re-binding damaged DNA in the absence of other DNA-binding protein recruitment. These results clarify how PARPi trap, shed new light on how PARPi function, and describe how PARPi properties correlate to trapping potency.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Humanos , Cinética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Dano ao DNA/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , DNA/metabolismo , DNA/química
9.
J Cancer Res Clin Oncol ; 148(12): 3521-3535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35962813

RESUMO

PURPOSE: Inhibition of Poly (ADP-ribose) Polymerases (PARP) results in the blocking of DNA repair cascades that eventually leads to apoptosis and cancer cell death. PARP inhibitors (PARPi) exhibit their actions either by inhibiting PARP-induced PARylation and/or by trapping PARP at the DNA damage site. But, the mechanism of PARPi-mediated induction of cellular toxicity via PARP-trapping is largely unknown. METHODS: The cellular toxicity of PARPi [Talazoparib (BMN) and/or Olaparib (Ola)] was investigated in oral cancer cells and the underlying mechanism was studied by using in vitro, in silico, and in vivo preclinical model systems. RESULTS: The experimental data suggested that induction of DNA damage is imperative for the optimal effectiveness of PARPi. Curcumin (Cur) exhibited maximum DNA damaging capacity in comparison to Resveratrol and 5-Flurouracil. Combination of BMN + Ola induced cell death in Cur pre-treated cells at much lower concentrations than their individual treatments. BMN + Ola treatment deregulated the BER cascade, potentiated PARP-trapping, caused cell cycle arrest and apoptosis in Cur pre-treated cells in a much more effective manner than their individual treatments. In silico data indicated the involvement of different amino acid residues which might play important roles in enhancing the BMN + Ola-mediated PARP-trapping. Moreover, in vivo mice xenograft data also suggested the BMN + Ola-mediated enhancement of apoptotic potentiality of Cur. CONCLUSION: Thus, induction of DNA damage was found to be essential for optimal functioning of PARPi and BMN + Ola combination treatment enhanced the apoptotic potentiality of Cur in cancer cells by enhancing the PARP-trapping activity via modulation of BER cascade.


Assuntos
Curcumina , Neoplasias Bucais , Humanos , Animais , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Curcumina/farmacologia , Resveratrol/farmacologia , Ribose/farmacologia , Linhagem Celular Tumoral , Apoptose , Poli(ADP-Ribose) Polimerases , Neoplasias Bucais/tratamento farmacológico , DNA , Aminoácidos/farmacologia , Difosfato de Adenosina/farmacologia
10.
DNA Repair (Amst) ; 105: 103157, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144488

RESUMO

Apart from inducing catalytic inhibition of PARP-1, PARP inhibitors can also trap PARP proteins at the sites of DNA damage and forming toxic PARP-DNA complexes. These complexes obstruct the DNA repair process, resulting in cancer cell death. To study the detailed mechanism of anti-cancer action through PARP trapping, we have treated oral cancer cells (H-357) with curcumin (Cur), olaparib (Ola) and their combination (Cur + Ola). Cur + Ola treatment triggered the expressions of PARP-1 and adenomatous polyposis coli (APC) and down regulated other base excision repair (BER) proteins in the chromatin fraction but not in the nuclear fraction. Cur + Ola treatment inhibited PARylation, altered interaction of PARP-1 with representative BER proteins and arrested cells in S-phase. We have for the first time provided direct evidence and measured the cellular PARP-1 trapping potentiality of Ola in Cur pretreated H-357 cells. Unchanged cellular PARP-1 trapping, unaltered expression of BER proteins and BER activity were found in APC silenced H-357 cells, which further confirmed that the DNA damage/repair response was APC-dependent. Interestingly, complete abolishment of the chromatin remodeler 'amplified in Liver Cancer 1' (ALC1), decreased expression of Histone H3 and histone acetyltransferase (P300) was noted in chromatin of Cur + Ola treated cells. Their expressions remained unchanged in APC silenced cells. Cur + Ola also altered the interaction of ALC1 with BER proteins including APC. Thus, the present study reveals that Cur + Ola treatment increased oral cancer cell death not only through catalytic inhibition of PARP-1 but also predominantly through PARP-1 trapping and indirect inhibition of chromatin remodeling.


Assuntos
Apoptose , Montagem e Desmontagem da Cromatina , Curcumina/farmacologia , Reparo do DNA , Neoplasias Bucais/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/fisiopatologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
11.
Elife ; 92020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32844745

RESUMO

It is being increasingly appreciated that the immunomodulatory functions of PARP1 inhibitors (PARPi) underlie their clinical activities in various BRCA-mutated tumors. PARPi possess both PARP1 inhibition and PARP1 trapping activities. The relative contribution of these two mechanisms toward PARPi-induced innate immune signaling, however, is poorly understood. We find that the presence of the PARP1 protein with uncompromised DNA-binding activities is required for PARPi-induced innate immune response. The activation of cGAS-STING signaling induced by various PARPi closely depends on their PARP1 trapping activities. Finally, we show that a small molecule PARP1 degrader blocks the enzymatic activity of PARP1 without eliciting PARP1 trapping or cGAS-STING activation. Our findings thus identify PARP1 trapping as a major contributor of the immunomodulatory functions of PARPi. Although PARPi-induced innate immunity is highly desirable in human malignancies, the ability of 'non-trapping' PARP1 degraders to avoid the activation of innate immune response could be useful in non-oncological diseases.


Assuntos
Dano ao DNA/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células HeLa , Humanos , Transdução de Sinais/efeitos dos fármacos
12.
J Exp Clin Cancer Res ; 38(1): 91, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30791940

RESUMO

BACKGROUND: Novel therapeutic strategies are urgently needed for the treatment of metastatic Urothelial Bladder Cancer. DNA damaging repair (DDR) targeting has been introduced in cinical trials for bladder cancer patients that carry alterations in homologous DNA repair genes, letting to envisage susceptibility to the Poly (adenosine diphosphate [ADP]) ribose polymerase (PARP) inhibitors. MAIN BODY: PARP inhibition, by amplifying the DNA damage, augments the mutational burden and promotes the immune priming of the tumor by increasing the neoantigen exposure and determining upregulation of programmed death ligand 1 (PD-L1) expression. Thus, the combination of PARP-inhibition and the PD/PD-L1 targeting may represent a compelling strategy to treat bladder cancer and has been introduced in recent clinical trials. The targeting of DDR has been also used in combination with epigenetic drugs able to modulate the expression of genes involved in DDR, and also able to act as immunomodulator agents suggesting their use in combination with immune-checkpoint inhibitors. CONCLUSION: In conclusion, it may be envisaged the combination of three classes of drugs to treat bladder cancer, by targeting the DDR process in a tumor context of DDR defect, together with epigenetic agents and immune-checkpoint inhibitors, whose association may amplify the effects and reduce the doses and the toxicity of each single drug.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antígeno B7-H1/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Regulação para Cima/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo
13.
Oncotarget ; 7(47): 76534-76550, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27708213

RESUMO

Poly(ADP-ribose) polymerase inhibitors (PARPIs) kill cancer cells by trapping PARP1 and PARP2. Talazoparib, the most potent PARPI inhibitor (PARPI), exhibits remarkable selectivity among the NCI-60 cancer cell lines beyond BRCA inactivation. Our genomic analyses reveal high correlation between response to talazoparib and Schlafen 11 (SLFN11) expression. Causality was established in four isogenic SLFN11-positive and -negative cell lines and extended to olaparib. Response to the talazoparib-temozolomide combination was also driven by SLFN11 and validated in 36 small cell lung cancer cell lines, and in xenograft models. Resistance in SLFN11-deficient cells was caused neither by impaired drug penetration nor by activation of homologous recombination. Rather, SLFN11 induced irreversible and lethal replication inhibition, which was independent of ATR-mediated S-phase checkpoint. The resistance to PARPIs by SLFN11 inactivation was overcome by ATR inhibition, mechanistically because SLFN11-deficient cells solely rely on ATR activation for their survival under PARPI treatment. Our study reveals that SLFN11 inactivation, which is common (~45%) in cancer cells, is a novel and dominant resistance determinant to PARPIs.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Inativação Gênica , Proteínas Nucleares/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Recombinação Homóloga , Humanos , Camundongos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Cell ; 30(4): 637-650, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27728808

RESUMO

Poly (ADP-ribose) polymerase inhibitors (PARPis) are clinically effective predominantly for BRCA-mutant tumors. We introduce a mechanism-based strategy to enhance PARPi efficacy based on DNA damage-related binding between DNA methyltransferases (DNMTs) and PARP1. In acute myeloid leukemia (AML) and breast cancer cells, DNMT inhibitors (DNMTis) alone covalently bind DNMTs into DNA and increase PARP1 tightly bound into chromatin. Low doses of DNMTis plus PARPis, versus each drug alone, increase PARPi efficacy, increasing amplitude and retention of PARP1 directly at laser-induced DNA damage sites. This correlates with increased DNA damage, synergistic tumor cytotoxicity, blunting of self-renewal, and strong anti-tumor responses, in vivo in unfavorable AML subtypes and BRCA wild-type breast cancer cells. Our combinatorial approach introduces a strategy to enhance efficacy of PARPis in treating cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Metilação de DNA/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Sinergismo Farmacológico , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA