Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0041124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567952

RESUMO

Influenza A virus infection activates the NLRP3 inflammasome, a multiprotein signaling complex responsible for the proteolytic activation and release of the proinflammatory cytokine IL-1ß from monocytes and macrophages. Some influenza A virus (IAV) strains encode a short 90-amino acid peptide (PB1-F2) on an alternative open reading frame of segment 2, with immunomodulatory activity. We recently demonstrated that contemporary IAV PB1-F2 inhibits the activation of NLRP3, potentially by NEK7-dependent activation. PB1-F2 binds to NLRP3 with its C-terminal 50 amino acids, but the exact binding motif was unknown. On the NLRP3 side, the interface is formed through the leucine-rich-repeat (LRR) domain, potentially in conjunction with the pyrin domain. Here, we took advantage of PB1-F2 sequences from IAV strains with either weak or strong NLRP3 interaction. Sequence comparison and structure prediction using Alphafold2 identified a short four amino acid sequence motif (TQGS) in PB1-F2 that defines NLRP3-LRR binding. Conversion of this motif to that of the non-binding PB1-F2 suffices to lose inhibition of NLRP3 dependent IL-1ß release. The TQGS motif further alters the subcellular localization of PB1-F2 and its colocalization with NLRP3 LRR and pyrin domain. Structural predictions suggest the establishment of additional hydrogen bonds between the C-terminus of PB1-F2 and the LRR domain of NLRP3, with two hydrogen bonds connecting to threonine and glutamine of the TQGS motif. Phylogenetic data show that the identified NLRP3 interaction motif in PB1-F2 is widely conserved among recent IAV-infecting humans. Our data explain at a molecular level the specificity of NLRP3 inhibition by influenza A virus. IMPORTANCE: Influenza A virus infection is accompanied by a strong inflammatory response and high fever. The human immune system facilitates the swift clearance of the virus with this response. An essential signal protein in the proinflammatory host response is IL-1b. It is released from inflammatory macrophages, and its production and secretion depend on the function of NLRP3. We had previously shown that influenza A virus blocks NLRP3 activation by the expression of a viral inhibitor, PB1-F2. Here, we demonstrate how this short peptide binds to NLRP3 and provide evidence that a four amino acid stretch in PB1-F2 is necessary and sufficient to mediate this binding. Our data identify a new virus-host interface required to block one signaling path of the innate host response against influenza A virus.


Assuntos
Vírus da Influenza A , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Virais , Humanos , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HEK293 , Inflamassomos/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Influenza Humana/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169077

RESUMO

Functional plasticity of innate lymphoid cells (ILCs) and T cells is regulated by host environmental cues, but the influence of pathogen-derived virulence factors has not been described. We now report the interplay between host interferon (IFN)-γ and viral PB1-F2 virulence protein in regulating the functions of ILC2s and T cells that lead to recovery from influenza virus infection of mice. In the absence of IFN-γ, lung ILC2s from mice challenged with the A/California/04/2009 (CA04) H1N1 virus, containing nonfunctional viral PB1-F2, initiated a robust IL-5 response, which also led to improved tissue integrity and increased survival. Conversely, challenge with Puerto Rico/8/1934 (PR8) H1N1 virus expressing fully functional PB1-F2, suppressed IL-5+ ILC2 responses, and induced a dominant IL-13+ CD8 T cell response, regardless of host IFN-γ expression. IFN-γ-deficient mice had increased survival and improved tissue integrity following challenge with lethal doses of CA04, but not PR8 virus, and increased resistance was dependent on the presence of IFN-γR+ ILC2s. Reverse-engineered influenza viruses differing in functional PB1-F2 activity induced ILC2 and T cell phenotypes similar to the PB1-F2 donor strains, demonstrating the potent role of viral PB1-F2 in host resistance. These results show the ability of a pathogen virulence factor together with host IFN-γ to regulate protective pulmonary immunity during influenza infection.


Assuntos
Linfócitos/imunologia , Orthomyxoviridae/metabolismo , Proteínas Virais/metabolismo , Animais , Feminino , Imunidade Inata/imunologia , Interferon gama/metabolismo , Interferons/metabolismo , Interleucina-5/imunologia , Interleucina-5/metabolismo , Pulmão/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Proteínas Virais/fisiologia , Virulência/genética , Fatores de Virulência/genética , Replicação Viral/genética
3.
J Virol ; 97(10): e0105623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830816

RESUMO

IMPORTANCE: The number of known virus species has increased dramatically through metagenomic studies, which search genetic material sampled from a host for non-host genes. Here, we focus on an important viral family that includes influenza viruses, the Orthomyxoviridae, with over 100 recently discovered viruses infecting hosts from humans to fish. We find that one virus called Wǔhàn mosquito virus 6, discovered in mosquitoes in China, has spread across the globe very recently. Surface proteins used to enter cells show signs of rapid evolution in Wǔhàn mosquito virus 6 and its relatives which suggests an ability to infect vertebrate animals. We compute the rate at which new orthomyxovirus species discovered add evolutionary history to the tree of life, predict that many viruses remain to be discovered, and discuss what appropriately designed future studies can teach us about how diseases cross between continents and species.


Assuntos
Genoma Viral , Orthomyxoviridae , Evolução Molecular , Orthomyxoviridae/genética , Filogenia , Metagenômica
4.
Int J Med Microbiol ; 314: 151598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237287

RESUMO

Respiratory viral infections may have different impacts ranging from infection without symptoms to severe disease or even death though the reasons are not well characterized. A patient (age group 5-15 years) displaying symptoms of hemolytic uremic syndrome died one day after hospitalization. qPCR, next generation sequencing, virus isolation, antigenic characterization, resistance analysis was performed and virus replication kinetics in well-differentiated airway cells were determined. Autopsy revealed hemorrhagic pneumonia as major pathological manifestation. Lung samples harbored a large population of A(H1N1)pdm09 viruses with the polymorphism H456H/Y in PB1 polymerase. The H456H/Y viruses replicated much faster to high viral titers than upper respiratory tract viruses in vitro. H456H/Y-infected air-liquid interface cultures of differentiated airway epithelial cells did reflect a more pronounced loss of ciliated cells. A different pattern of virus quasispecies was found in the upper airway samples where substitution S263S/F (HA1) was observed. The data support the notion that viral quasispecies had evolved locally in the lung to support high replicative fitness. This change may have initiated further pathogenic processes leading to rapid dissemination of inflammatory mediators followed by development of hemorrhagic lung lesions and fatal outcome.


Assuntos
Síndrome Hemolítico-Urêmica , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Pré-Escolar , Criança , Adolescente , Células Epiteliais , Pulmão , Influenza Humana/epidemiologia
5.
Vet Res ; 55(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173025

RESUMO

Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.


Assuntos
Vírus da Influenza A Subtipo H7N7 , Vírus da Influenza A , Influenza Aviária , Humanos , Animais , Galinhas/metabolismo , Virulência , Proteínas Virais/metabolismo , Vírus da Influenza A/metabolismo , Fatores de Virulência/genética , Mamíferos
6.
Vet Res ; 55(1): 36, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520035

RESUMO

Equine influenza virus (EIV) remains a threat to horses, despite the availability of vaccines. Strategies to monitor the virus and prevent potential vaccine failure revolve around serological assays, RT-qPCR amplification, and sequencing the viral hemagglutinin (HA) and neuraminidase (NA) genes. These approaches overlook the contribution of other viral proteins in driving virulence. This study assesses the potential of long-read nanopore sequencing for fast and precise sequencing of circulating equine influenza viruses. Therefore, two French Florida Clade 1 strains, including the one circulating in winter 2018-2019 exhibiting more pronounced pathogenicity than usual, as well as the two currently OIE-recommended vaccine strains, were sequenced. Our results demonstrated the reliability of this sequencing method in generating accurate sequences. Sequence analysis of HA revealed a subtle antigenic drift in the French EIV strains, with specific substitutions, such as T163I in A/equine/Paris/1/2018 and the N188T mutation in post-2015 strains; both substitutions were in antigenic site B. Antigenic site E exhibited modifications in post-2018 strains, with the N63D substitution. Segment 2 sequencing also revealed that the A/equine/Paris/1/2018 strain encodes a longer variant of the PB1-F2 protein when compared to other Florida clade 1 strains (90 amino acids long versus 81 amino acids long). Further biological and biochemistry assays demonstrated that this PB1-F2 variant has enhanced abilities to abolish the mitochondrial membrane potential ΔΨm and permeabilize synthetic membranes. Altogether, our results highlight the interest in rapidly characterizing the complete genome of circulating strains with next-generation sequencing technologies to adapt vaccines and identify specific virulence markers of EIV.


Assuntos
Doenças dos Cavalos , Vírus da Influenza A Subtipo H3N8 , Infecções por Orthomyxoviridae , Vacinas , Animais , Aminoácidos/genética , Genômica , Cavalos , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Reprodutibilidade dos Testes , Análise de Sequência/veterinária , Fatores de Virulência
7.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979777

RESUMO

The multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation. Consistent with intrinsic protein instability as basis for this gain-of-function, internal structural disorder is associated with the unique cytotoxic sequences of the 1918 PB1-F2 protein. Infusing mice with recombinant DDX3 protein completely rescued them from lethal infection with the 1918 PB1-F2-producing virus. Alongside NS1 protein, 1918 PB1-F2 therefore constitutes a potent IFN antagonist causative for the severe pathogenicity of the 1918 influenza strain. Our identification of molecular determinants of pathogenesis should be useful for the future design of new antiviral strategies against influenza pandemics.


Assuntos
RNA Helicases DEAD-box/metabolismo , Influenza Humana/virologia , Interferons/metabolismo , Orthomyxoviridae/patogenicidade , Proteínas Virais/fisiologia , Células A549 , Animais , Cães , Feminino , Células HEK293 , História do Século XX , Humanos , Influenza Humana/epidemiologia , Influenza Humana/história , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/metabolismo , Pandemias , Proteólise , Transdução de Sinais , Células U937 , Proteínas Virais/metabolismo , Virulência/fisiologia
8.
Planta ; 258(2): 26, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354348

RESUMO

MAIN CONCLUSION: LBD18 and IAA14 antagonistically interact with ARF7 through the electrostatic faces in the ARF7PB1 domain, modulating ARF7 transcriptional activity. Auxin Response Factor 7 (ARF7)/ARF19 control lateral root development by directly activating Lateral Organ Boundaries Domain 16 (LBD16)/LBD18 genes in Arabidopsis. LBD18 upregulates ARF19 expression by binding to the ARF19 promoter. It also interacts with ARF7 through the Phox and Bem1 (PB1) domain to enhance the ARF7 transcriptional activity, forming a dual mode of positive feedback loop. LBD18 competes with the repressor indole-3-acetic acid 14 (IAA14) for ARF7 binding through the PB1 domain. In this study, we examined the molecular determinant of the ARF7 PB1 domain for interacting with LBD18 and showed that the electronic faces in the ARF7 PB1 domain are critical for interacting with LBD18 and IAA14/17. We used a luminescence complementation imaging assay to determine protein-protein interactions. The results showed that mutation of the invariant lysine residue and the OPCA motif in the PB1 domain in ARF7 significantly reduces the protein interaction between ARF7 and LBD18. Transient gene expression assays with Arabidopsis protoplasts showed that IAA14 suppressed transcription-enhancing activity of LBD18 on the LUC reporter gene fused to the ARF19 promoter harboring an auxin response element, but mutation of the invariant lysine residue and OPCA motif in the PB1 domain of IAA14 reduced the repression capability of IAA14 for transcription-enhancing activity of LBD18. We further showed that the same mutation in the PB1 domain of IAA14 reduces its repression capability, thereby increasing the LUC activity induced by both ARF7 and LBD18 compared with IAA14. These results suggest that LBD18 competes with IAA14 for ARF7 binding via the electrostatic faces of the ARF7 PB1 domain to modulate ARF7 transcriptional activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fator VII/genética , Fator VII/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lisina/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
9.
J Cell Mol Med ; 26(14): 3837-3849, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672925

RESUMO

The PBRM1 (PB1) gene which encodes the specific subunit BAF180 of the PBAF SWI/SNF complex, is highly mutated (~ 40%) in clear cell renal cell carcinoma (ccRCC). However, its functions and impact on cell signalling are still not fully understood. Aerobic glycolysis, also known as the 'Warburg Effect', is a hallmark of cancer, whether PB1 is involved in this metabolic shift in clear cell renal cell carcinoma remains unclear. Here, with established stable knockdown PB1 cell lines, we performed functional assays to access the effects on 786-O and SN12C cells. Based on the RNA-seq data, we selected some genes encoding key glycolytic enzymes, including PFKP, ENO1, PKM and LDHA, and examined the expression levels. The AKT-mTOR signalling pathway activity and expression of HIF1α were also analysed. Our data demonstrate that PB1 deficiency promotes the proliferation, migration, Xenograft growth of 786-O and SN12C cells. Notably, knockdown of PB1 activates AKT-mTOR signalling and increases the expression of key glycolytic enzymes at both mRNA and protein levels. Furthermore, we provide evidence that deficient PB1 and hypoxic conditions exert a synergistic effect on HIF 1α expression and lactate production. Thus, our study provides novel insights into the roles of tumour suppressor PB1 and suggests that the AKT-mTOR signalling pathway, as well as glycolysis, is a potential drug target for ccRCC patients with deficient PB1.


Assuntos
Carcinoma de Células Renais , Proteínas de Ligação a DNA , Neoplasias Renais , Fatores de Transcrição , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glicólise/genética , Humanos , Neoplasias Renais/patologia , Vício Oncogênico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 297(1): 100885, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34146545

RESUMO

PB1-F2 is a virulence factor of influenza A virus known to increase viral pathogenicity in mammalian hosts. PB1-F2 is an intrinsically disordered protein displaying a propensity to form amyloid-like fibers. However, the correlation between PB1-F2 structures and the resulting inflammatory response is unknown. Here, we used synchrotron-coupled Fourier transform-IR and deep UV microscopies to determine the presence of PB1-F2 fibers in influenza A virus-infected mice. In order to study the correlation between PB1-F2 structure and the inflammatory response, transgenic mice expressing luciferase under the control of an NF-κB promotor, allowing in vivo monitoring of inflammation, were intranasally instilled with monomeric, fibrillated, or truncated forms of recombinant PB1-F2. Our intravital NF-κB imaging, supported by cytokine quantification, clearly shows the proinflammatory effect of PB1-F2 fibers compared with N-terminal region of PB1-F2 unable to fibrillate. It is noteworthy that instillation of monomeric PB1-F2 of H5N1 virus induced a stronger inflammatory response when compared with prefibrillated PB1-F2 of H1N1 virus, suggesting mechanisms of virulence depending on PB1-F2 sequence. Finally, using whole-body plethysmography to measure volume changes in the lungs, we quantified the effects of the different forms of PB1-F2 on respiratory parameters. Thus, we conclude that PB1-F2-induced inflammation and respiratory distress are tightly correlated with sequence polymorphism and oligomerization status of the protein.


Assuntos
Infecções por Orthomyxoviridae/metabolismo , Multimerização Proteica , Respiração , Transdução de Sinais , Proteínas Virais/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Luciferases/genética , Luciferases/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia , Polimorfismo Genético , Regiões Promotoras Genéticas , Proteínas Virais/genética
11.
New Phytol ; 235(2): 402-419, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35434800

RESUMO

In plants, most developmental programs depend on the action of auxin. The best described model of the auxin signaling pathway, which explains most, but not all, of the auxin transcriptional responses, relies on a de-repression mechanism. The auxin/indole-3-acetic acid repressors (Aux/IAAs) interact with the auxin response factors (ARFs), the transcription factors of the auxin signaling pathway, leading to repression of the ARF-controlled genes. Auxin induces Aux/IAA degradation, releases ARFs and activates transcription. However, this elegant model is not suitable for all ARFs. Indeed, in Arabidopsis, which has 22 ARFs, only five of them fit into the model since they are the ones able to interact with Aux/IAAs. The remaining 17 have a limited capacity to interact with the repressors, and their mechanisms of action are still unclear. The differential interactions between ARF and Aux/IAA proteins constitute one of many examples of the biochemical and structural diversification of ARFs that affect their action and therefore affect auxin transcriptional responses. A deeper understanding of the structural properties of ARFs is fundamental to obtaining a better explanation of the action of auxin in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
EMBO Rep ; 21(12): e50421, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180976

RESUMO

Pyroptosis is a fulminant form of macrophage cell death, contributing to release of pro-inflammatory cytokines. In humans, it depends on caspase 1/4-activation of gasdermin D and is characterized by the release of cytoplasmic content. Pathogens apply strategies to avoid or antagonize this host response. We demonstrate here that a small accessory protein (PB1-F2) of contemporary H5N1 and H3N2 influenza A viruses (IAV) curtails fulminant cell death of infected human macrophages. Infection of macrophages with a PB1-F2-deficient mutant of a contemporary IAV resulted in higher levels of caspase-1 activation, cleavage of gasdermin D, and release of LDH and IL-1ß. Mechanistically, PB1-F2 limits transition of NLRP3 from its auto-repressed and closed confirmation into its active state. Consequently, interaction of a recently identified licensing kinase NEK7 with NLRP3 is diminished, which is required to initiate inflammasome assembly.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Humanos , Inflamassomos/genética , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A/genética , Macrófagos , Quinases Relacionadas a NIMA , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose
13.
Cell Mol Life Sci ; 78(23): 7237-7256, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34677644

RESUMO

Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA polymerase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.


Assuntos
Imunidade Inata/imunologia , Imunomodulação/imunologia , Vírus da Influenza A/enzimologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Mitocôndrias/metabolismo , RNA Viral/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/fisiologia , Replicação Viral/genética
14.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087462

RESUMO

The viral ribonucleoprotein (vRNP) of the influenza A virus (IAV) is responsible for the viral RNA transcription and replication in the nucleus, and its functions rely on host factors. Previous studies have indicated that eukaryotic translation elongation factor 1 delta (eEF1D) may associate with RNP subunits, but its roles in IAV replication are unclear. Herein, we showed that eEF1D was an inhibitor of IAV replication because knockout of eEF1D resulted in a significant increase in virus yield. eEF1D interacted with RNP subunits polymerase acidic protein (PA), polymerase basic 1 (PB1), polymerase basic 2 (PB2), and also with nucleoprotein (NP) in an RNA-dependent manner. Further studies revealed that eEF1D impeded the nuclear import of NP and PA-PB1 heterodimer of IAV, thereby suppressing the vRNP assembly, viral polymerase activity, and viral RNA synthesis. Together, our studies demonstrate eEF1D negatively regulating the IAV replication by inhibition of the nuclear import of RNP subunits, which not only uncovers a novel role of eEF1D in IAV replication but also provides new insights into the mechanisms of nuclear import of vRNP proteins.IMPORTANCE Influenza A virus is the major cause of influenza, a respiratory disease in humans and animals. Different from most other RNA viruses, the transcription and replication of IAV occur in the cell nucleus. Therefore, the vRNPs must be imported into the nucleus for viral transcription and replication, which requires participation of host proteins. However, the mechanisms of the IAV-host interactions involved in nuclear import remain poorly understood. Here, we identified eEF1D as a novel inhibitor for the influenza virus life cycle. Importantly, eEF1D impaired the interaction between NP and importin α5 and the interaction between PB1 and RanBP5, which impeded the nuclear import of vRNP. Our studies not only reveal the molecular mechanisms of the nuclear import of IAV vRNP but also provide potential anti-influenza targets for antiviral development.


Assuntos
Núcleo Celular/metabolismo , Vírus da Influenza A/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Células A549 , Transporte Ativo do Núcleo Celular , Células HEK293 , Humanos , Vírus da Influenza A/genética , Fator 1 de Elongação de Peptídeos/genética , Ligação Proteica , Multimerização Proteica , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , Transcrição Gênica , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Proteínas Virais/química , Replicação Viral , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
15.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068418

RESUMO

Influenza virus-infected cells vary widely in their expression of viral genes and only occasionally activate innate immunity. Here, we develop a new method to assess how the genetic variation in viral populations contributes to this heterogeneity. We do this by determining the transcriptome and full-length sequences of all viral genes in single cells infected with a nominally "pure" stock of influenza virus. Most cells are infected by virions with defects, some of which increase the frequency of innate-immune activation. These immunostimulatory defects are diverse and include mutations that perturb the function of the viral polymerase protein PB1, large internal deletions in viral genes, and failure to express the virus's interferon antagonist NS1. However, immune activation remains stochastic in cells infected by virions with these defects and occasionally is triggered even by virions that express unmutated copies of all genes. Our work shows that the diverse spectrum of defects in influenza virus populations contributes to-but does not completely explain-the heterogeneity in viral gene expression and immune activation in single infected cells.IMPORTANCE Because influenza virus has a high mutation rate, many cells are infected by mutated virions. But so far, it has been impossible to fully characterize the sequence of the virion infecting any given cell, since conventional techniques such as flow cytometry and single-cell transcriptome sequencing (scRNA-seq) only detect if a protein or transcript is present, not its sequence. Here we develop a new approach that uses long-read PacBio sequencing to determine the sequences of virions infecting single cells. We show that viral genetic variation explains some but not all of the cell-to-cell variability in viral gene expression and innate immune induction. Overall, our study provides the first complete picture of how viral mutations affect the course of infection in single cells.


Assuntos
Variação Genética , Imunidade Inata , Vírus da Influenza A Subtipo H1N1 , Análise de Sequência de RNA , Análise de Célula Única , Proteínas não Estruturais Virais , Células A549 , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
16.
Microbiol Immunol ; 64(11): 778-782, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918505

RESUMO

In recent years, antimicrobial-resistant Pseudomonas aeruginosa strains have increased in the veterinary field. Therefore, phage therapy has received significant attention as an approach for overcoming antimicrobial resistance. In this context, we isolated and characterized four Pseudomonas bacteriophages. Phylogenetic analysis showed that the isolated phages are novel Myoviridae Pbunavirus PB1-like phages with ØR12 belonging to a different clade compared with the other three. These phages had distinct lytic activity against 22 P. aeruginosa veterinary isolates. The phage cocktail composed from the PB1-like phages clearly inhibited the occurrence of the phage-resistant variant, suggesting that these phages could be useful in phage therapy.


Assuntos
Bacteriófagos/isolamento & purificação , Myoviridae/isolamento & purificação , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/virologia , Antibacterianos , Bacteriófagos/classificação , DNA Viral , Farmacorresistência Bacteriana Múltipla , Genoma Viral , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/genética , Terapia por Fagos , Filogenia , Infecções por Pseudomonas/veterinária , Infecções por Pseudomonas/virologia , Fagos de Pseudomonas/genética
17.
J Gen Virol ; 100(7): 1079-1092, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31169484

RESUMO

Candidate vaccine viruses (CVVs) for seasonal influenza A virus are made by reassortment of the antigenic virus with an egg-adapted strain, typically A/Puerto Rico/8/34 (PR8). Many 2009 A(H1N1) pandemic (pdm09) high-growth reassortants (HGRs) selected this way contain pdm09 segment 2 in addition to the antigenic genes. To investigate this, we made CVV mimics by reverse genetics (RG) that were either 6 : 2 or 5 : 3 reassortants between PR8 and two pdm09 strains, A/California/7/2009 (Cal7) and A/England/195/2009, differing in the source of segment 2. The 5 : 3 viruses replicated better in MDCK-SIAT1 cells than the 6 : 2 viruses, but the 6 : 2 CVVs gave higher haemagglutinin (HA) antigen yields from eggs. This unexpected phenomenon reflected temperature sensitivity conferred by pdm09 segment 2, as the egg HA yields of the 5 : 3 viruses improved substantially when viruses were grown at 35 °C compared with 37.5 °C, whereas the 6 : 2 virus yields did not. However, the authentic 5 : 3 pdm09 HGRs, X-179A and X-181, were not markedly temperature sensitive despite their PB1 sequences being identical to that of Cal7, suggesting compensatory mutations elsewhere in the genome. Sequence comparisons of the PR8-derived backbone genes identified polymorphisms in PB2, NP, NS1 and NS2. Of these, PB2 N701D affected the temperature dependence of viral transcription and, furthermore, improved and drastically reduced the temperature sensitivity of the HA yield from the 5 : 3 CVV mimic. We conclude that the HA yield of pdm09 CVVs can be affected by an epistatic interaction between PR8 PB2 and pdm09 PB1, but that this can be minimized by ensuring that the backbones used for vaccine manufacture in eggs contain PB2 701D.


Assuntos
Epistasia Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Influenza Humana/virologia , Proteínas Virais/genética , Animais , Embrião de Galinha , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vacinas contra Influenza/genética , Vacinas contra Influenza/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/metabolismo , Temperatura , Proteínas Virais/metabolismo
18.
J Gen Virol ; 100(3): 414-430, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30672726

RESUMO

The accessory protein, PB1-F2, of influenza A virus (IAV) functions in a chicken host to prolong infectious virus shedding and thus the transmission window. Here we show that this delay in virus clearance by PB1-F2 in chickens is accompanied by reduced transcript levels of type 1 interferon (IFN)-induced genes and NFκB-activated pro-inflammation cytokines. In vitro, two avian influenza isolate-derived PB1-F2 proteins, H9N2 UDL01 and H5N1 5092, exhibited the same antagonism of the IFN and pro-inflammation induction pathways seen in vivo, but to different extents. The two PB1-F2 proteins had different cellular localization in chicken cells, with H5N1 5092 being predominantly mitochondrial-associated and H9N2 UDL being cytoplasmic but not mitochondrial-localized. We hypothesized that PB1-F2 localization might influence the functionality of the protein during infection and that the protein sequence could alter cellular localization. We demonstrated that the sequence of the C-terminus of PB1-F2 determined cytoplasmic localization in chicken cells and this was linked with protein instability. Mitochondrial localization of PB1-F2 resulted in reduced antagonism of an NFκB-dependent promoter. In parallel, mitochondrial localization of PB1-F2 increased the potency of chicken IFN 2 induction antagonism. We suggest that mitochondrial localization of PB1-F2 restricts interaction with cytoplasmic-located IKKß, reducing NFκB-responsive promoter antagonism, but enhances antagonism of the IFN2 promoter through interaction with the mitochondrial adaptor MAVS. Our study highlights the differential mechanisms by which IAV PB1-F2 protein can dampen the avian host innate signalling response.


Assuntos
Virus da Influenza A Subtipo H5N1/metabolismo , Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Aviária/imunologia , Interferon beta/genética , NF-kappa B/genética , Doenças das Aves Domésticas/genética , Proteínas Virais/metabolismo , Animais , Galinhas , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/genética , Influenza Aviária/virologia , Interferon beta/imunologia , NF-kappa B/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Regiões Promotoras Genéticas , Proteínas Virais/genética
19.
J Cell Sci ; 130(22): 3839-3850, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021346

RESUMO

Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 interacts with LC3 and is required for starvation and rapamycin-induced activation of autophagy. Here, we report that NEDD4 directly binds to SQSTM1 via its HECT domain and polyubiquitylates SQSTM1. This ubiquitylation is through K63 conjugation and is not involved in proteasomal degradation. Mutational analysis indicates that NEDD4 interacts with and ubiquitylates the PB1 domain of SQSTM1. Depletion of NEDD4 or overexpression of the ligase-defective mutant of NEDD4 induced accumulation of aberrant enlarged SQSTM1-positive inclusion bodies that are co-localized with the endoplasmic reticulum (ER) marker CANX, suggesting that the ubiquitylation functions in the SQSTM1-mediated biogenic process in inclusion body autophagosomes. Taken together, our studies show that NEDD4 is an autophagic E3 ubiquitin ligase that ubiquitylates SQSTM1, facilitating SQSTM1-mediated inclusion body autophagy.


Assuntos
Autofagia , Ubiquitina-Proteína Ligases Nedd4/fisiologia , Proteína Sequestossoma-1/metabolismo , Ubiquitinação , Células A549 , Células HEK293 , Humanos , Corpos de Inclusão/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas/metabolismo , Proteólise
20.
BMC Plant Biol ; 19(1): 90, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819094

RESUMO

BACKGROUND: NIN-LIKE PROTEIN (NLP) transcription factors are master regulators of nitrate-inducible gene expression in higher plants. NLP transcription factors contain a nitrate signal-responsive domain in the amino-terminal region, an RWP-RK-type DNA-binding domain in the middle, and a Phox and Bem1 (PB1) domain at the carboxy terminus. Although the PB1 domain of NLP transcription factors appears to mediate protein-protein interactions associated with nitrate-inducible gene expression in higher plants, its precise role in nitrate-inducible gene expression has not previously been characterized. RESULTS: Yeast two-hybrid assays with the PB1 domain of the Arabidopsis transcription factor NLP7 revealed NLP-NLP interactions that required the core amino acid residues (K867, D909, D911, and E913) within the PB1 domain. Consistent with previous speculation on redundant and overlapping functions between different Arabidopsis NLP transcription factors, NLP-NLP interactions were observed between a variety of combinations of different NLP transcription factors. Furthermore, a mutated form of NLP7 that harbored amino acid substitutions at K867, D909, D911, and E913 required a far higher level of expression than wild-type NLP7 to restore nitrate-responsive gene expression and growth of nlp6 nlp7-1 double mutants. Surprisingly, however, the ability to transactivate nitrate-responsive promoters in protoplast transient expression assays was similar between wild-type and mutant forms of NLP7, suggesting that the PB1 domain was not required for transcription from naked DNA. CONCLUSIONS: Protein-protein interactions mediated by the PB1 domain of NLP transcription factors are necessary for full induction of nitrate-dependent expression of target genes in planta. The PB1 domains of NLP transcription factors may act on gene expression from chromosomal DNA via homo- and hetero-oligomerization in the presence of nitrate.


Assuntos
Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Transdução de Sinais/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA