Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(3): e0162723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349162

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most ß-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed "NaHCO3-responsiveness" has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care ß-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such "NaHCO3-responsive" isolates can be effectively cleared by ß-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3-responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting ß-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific ß-lactam agents.


Assuntos
Endocardite Bacteriana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Cefuroxima/farmacologia , Bicarbonatos/farmacologia , Staphylococcus aureus , beta-Lactamas/farmacologia , Endocardite Bacteriana/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico
2.
Biol Chem ; 405(1): 55-65, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246368

RESUMO

Understanding how neuronal networks generate complex behavior is one of the major goals of Neuroscience. Neurotransmitter and Neuromodulators are crucial for information flow between neurons and understanding their dynamics is the key to unravel their role in behavior. To understand how the brain transmits information and how brain states arise, it is essential to visualize the dynamics of neurotransmitters, neuromodulators and neurochemicals. In the last five years, an increasing number of single-wavelength biosensors either based on periplasmic binding proteins (PBPs) or on G-protein-coupled receptors (GPCR) have been published that are able to detect neurotransmitter release in vitro and in vivo with high spatial and temporal resolution. Here we review and discuss recent progress in the development of these sensors, their limitations and future directions.


Assuntos
Técnicas Biossensoriais , Encéfalo , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neurônios/metabolismo , Corantes , Neurotransmissores/metabolismo
3.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062809

RESUMO

The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17ß-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins promoted cell proliferation after 24 h of treatment. Furthermore, for all three treatments, the regulation of the highest number of markers occurred on days 6 and 12 of differentiation, regardless of when the treatment was applied. Phycobiliproteins reduced lipid droplet accumulation on days 3, 6, 10, and 13 of the adipogenic process, while rosiglitazone showed no differences compared to the control. On day 6, both phycobiliproteins and rosiglitazone positively regulated Acc1 mRNA. Meanwhile, all three treatments negatively regulated Pparγ and C/ebpα. Phycobiliproteins and estradiol also negatively regulated Ucp1 and Glut4 mRNAs. Rosiglitazone and estradiol, on the other hand, negatively regulated Ppara and Il-6 mRNAs. By day 12, phycobiliproteins and rosiglitazone upregulated Pparγ mRNA and negatively regulated Tnfα and Il-1ß. Additionally, phycobiliproteins and estradiol positively regulated Il-6 and negatively regulated Ppara, Ucp2, Acc1, and Glut4. Rosiglitazone and estradiol upregulate C/ebpα and Ucp1 mRNAs. The regulation exerted by phycobiliproteins on the mRNA expression of the studied markers was dependent on the phase of cell differentiation. The results of this study highlight that phycobiliproteins have an anti-adipogenic and anti-inflammatory effect by reducing the expression of adipogenic, lipogenic, and inflammatory genes in 3T3-L1 cells at different stages of the differentiation process.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Diferenciação Celular , Estradiol , Ficobiliproteínas , Rosiglitazona , Animais , Camundongos , Estradiol/farmacologia , Rosiglitazona/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Ficobiliproteínas/farmacologia , Ficobiliproteínas/metabolismo , Ficobiliproteínas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , PPAR gama/metabolismo , PPAR gama/genética , Proliferação de Células/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/genética , Spirulina
4.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474545

RESUMO

Sol g 2 is the major protein in Solenopsis geminata fire ant venom. It shares the highest sequence identity with Sol i 2 (S. invicta) and shares high structural homology with LmaPBP (pheromone-binding protein (PBP) from the cockroach Leucophaea maderae). We examined the specific Sol g 2 protein ligands from fire ant venom. The results revealed that the protein naturally formed complexes with hydrocarbons, including decane, undecane, dodecane, and tridecane, in aqueous venom solutions. Decane showed the highest affinity binding (Kd) with the recombinant Sol g 2.1 protein (rSol g 2.1). Surprisingly, the mixture of alkanes exhibited a higher binding affinity with the rSol g 2.1 protein compared to a single one, which is related to molecular docking simulations, revealing allosteric binding sites in the Sol g 2.1 protein model. In the trail-following bioassay, we observed that a mixture of the protein sol g 2.1 and hydrocarbons elicited S. geminata worker ants to follow trails for a longer time and distance compared to a mixture containing only hydrocarbons. This suggests that Sol g 2.1 protein may delay the evaporation of the hydrocarbons. Interestingly, the piperidine alkaloids extracted have the highest attraction to the ants. Therefore, the mixture of hydrocarbons and piperidines had a synergistic effect on the trail-following of ants when both were added to the protein.


Assuntos
Venenos de Formiga , Formigas , Animais , Proteínas de Transporte/metabolismo , Formigas Lava-Pés , Feromônios/química , Ligantes , Simulação de Acoplamento Molecular , Formigas/química , Alcanos/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(11): 6129-6138, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123104

RESUMO

In oval-shaped Streptococcus pneumoniae, septal and longitudinal peptidoglycan syntheses are performed by independent functional complexes: the divisome and the elongasome. Penicillin-binding proteins (PBPs) were long considered the key peptidoglycan-synthesizing enzymes in these complexes. Among these were the bifunctional class A PBPs, which are both glycosyltransferases and transpeptidases, and monofunctional class B PBPs with only transpeptidase activity. Recently, however, it was established that the monofunctional class B PBPs work together with transmembrane glycosyltransferases (FtsW and RodA) from the shape, elongation, division, and sporulation (SEDS) family to make up the core peptidoglycan-synthesizing machineries within the pneumococcal divisome (FtsW/PBP2x) and elongasome (RodA/PBP2b). The function of class A PBPs is therefore now an open question. Here we utilize the peptidoglycan hydrolase CbpD that targets the septum of S. pneumoniae cells to show that class A PBPs have an autonomous role during pneumococcal cell wall synthesis. Using assays to specifically inhibit the function of PBP2x and FtsW, we demonstrate that CbpD attacks nascent peptidoglycan synthesized by the divisome. Notably, class A PBPs could process this nascent peptidoglycan from a CbpD-sensitive to a CbpD-resistant form. The class A PBP-mediated processing was independent of divisome and elongasome activities. Class A PBPs thus constitute an autonomous functional entity which processes recently formed peptidoglycan synthesized by FtsW/PBP2×. Our results support a model in which mature pneumococcal peptidoglycan is synthesized by three functional entities, the divisome, the elongasome, and bifunctional PBPs. The latter modify existing peptidoglycan but are probably not involved in primary peptidoglycan synthesis.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Streptococcus pneumoniae/fisiologia , Amidoidrolases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Divisão Celular , Proteínas de Membrana/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
6.
Mol Microbiol ; 116(1): 41-52, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33709487

RESUMO

Until recently, class A penicillin-binding proteins (aPBPs) were the only enzymes known to catalyze glycan chain polymerization from lipid II in bacteria. Hence, the discovery of two novel lipid II polymerases, FtsW and RodA, raises new questions and has consequently received a lot of attention from the research community. FtsW and RodA are essential and highly conserved members of the divisome and elongasome, respectively, and work in conjunction with their cognate class B PBPs (bPBPs) to synthesize the division septum and insert new peptidoglycan into the lateral cell wall. The identification of FtsW and RodA as peptidoglycan glycosyltransferases has raised questions regarding the role of aPBPs in peptidoglycan synthesis and fundamentally changed our understanding of the process. Despite their dethronement, aPBPs are essential in most bacteria. So, what is their function? In this review, we discuss recent progress in answering this question and present our own views on the topic.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
7.
Mol Microbiol ; 115(6): 1152-1169, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33269494

RESUMO

Bacterial peptidoglycan (PG) synthesis requires strict spatiotemporal organization to reproduce specific cell shapes. In ovoid-shaped Streptococcus pneumoniae (Spn), septal and peripheral (elongation) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examined Spn cells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D-SIM (structured-illumination microscopy). Labeling with fluorescent D-amino acids (FDAA) showed that areas of new transpeptidase (TP) activity catalyzed by penicillin-binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading-edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA-marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Pulses of FDAA labeling revealed an arrangement of separate regularly spaced "nodes" of TP activity around the division site of predivisional cells. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal new aspects of spatially ordered PG synthesis in ovococcal bacteria during cell division.


Assuntos
Divisão Celular/fisiologia , Peptidoglicano/biossíntese , Streptococcus pneumoniae/metabolismo , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Corantes Fluorescentes , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
8.
Arch Insect Biochem Physiol ; 107(4): e21829, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191347

RESUMO

The olfactory system of insects facilitates their search for host and mates, hence it plays an essential role for insect survival and reproduction. Insects recognize odor substances through olfactory neurons and olfactory genes. Previous studies showed that there are significant sex-specific differences in how insects identify odorant substances, especially sex pheromones. However, whether the sex-specific recognition of odorant substances is caused by differences in the expression of olfaction-related genes between males and females remains unclear. To clarify this problem, the whole transcriptome sequence of the adult Helicoverpa assulta, an important agricultural pest of tobacco and other Solanaceae plants, was obtained using Pacbio sequencing. RNA-seq analysis showed that there were 27 odorant binding proteins (OBPs), 24 chemosensory proteins, 4 pheromone-binding proteins (PBPs), 68 odorant receptors and 2 sensory neuron membrane proteins (SNMPs) genes, that were expressed in the antennae of male and female H. assulta. Females had significantly higher expression of General odorant-binding protein 1-like, OBP, OBP3, PBP3 and SNMP1 than males, while males had significantly higher expression of GOBP1, OBP7, OBP13, PBP2 and SNMP2. These results improve our understanding of mate search and host differentiation in H. assulta.


Assuntos
Antenas de Artrópodes/metabolismo , Mariposas/metabolismo , Caracteres Sexuais , Olfato/genética , Transcriptoma , Animais , Feminino , Masculino , Mariposas/genética
9.
Phytopathology ; 111(8): 1301-1312, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33369478

RESUMO

Previous research has shown that penicillin-binding proteins (PBPs), enzymes involved in peptidoglycan (PG) assembly, could play an important role during the induction of the viable but nonculturable (VBNC) state, which allows non-spore-forming bacteria to survive adverse environmental conditions. The current study found that Clavibacter michiganensis has seven PBPs. Mutant analysis indicated that deletion of either of the class B PBPs was lethal and that the class A PBPs had an important role in PG synthesis, with the ΔpbpC mutant having an altered cellular morphology that resulted in longer cells that were swollen at one end and had thinner cell walls. The ΔpbpC mutant was also found to produce mucoid colonies in solid culture and a lower final cell titer in liquid medium, as well as having high sensitivity to osmotic stress and lysozyme treatment and surprisingly high pathogenicity. The double mutant, ΔdacB/ΔpbpE, also had a slightly altered phenotype, resulting in longer cells. Further analysis revealed that both mutants had high sensitivity to copper, which resulted in quicker induction into the VBNC state. However, only the ΔpbpC mutant had significantly reduced survivorship in the VBNC state. The study also confirmed that the VBNC state significantly improved the survivorship of wild-type C. michiganensis cells in response to environmental stresses and systemically demonstrated the protective role of the VBNC state in C. michiganensis, which is an important finding regarding its epidemiology and has serious implications for disease management.


Assuntos
Clavibacter , Doenças das Plantas , Viabilidade Microbiana , Proteínas de Ligação às Penicilinas , Peptidoglicano , Virulência
10.
Subcell Biochem ; 92: 127-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214986

RESUMO

The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.


Assuntos
Peptidoglicano , Parede Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo
11.
Subcell Biochem ; 93: 273-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31939154

RESUMO

The bacterial cell wall is the validated target of mainstream antimicrobials such as penicillin and vancomycin. Penicillin and other ß-lactams act by targeting Penicillin-Binding Proteins (PBPs), enzymes that play key roles in the biosynthesis of the main component of the cell wall, the peptidoglycan. Despite the spread of resistance towards these drugs, the bacterial cell wall continues to be a major Achilles' heel for microbial survival, and the exploration of the cell wall formation machinery is a vast field of work that can lead to the development of novel exciting therapies. The sheer complexity of the cell wall formation process, however, has created a significant challenge for the study of the macromolecular interactions that regulate peptidoglycan biosynthesis. New developments in genetic and biochemical screens, as well as different aspects of structural biology, have shed new light on the importance of complexes formed by PBPs, notably within the cell wall elongation machinery. This chapter summarizes structural and functional details of PBP complexes involved in the periplasmic and membrane steps of peptidoglycan biosynthesis with a focus on cell wall elongation. These assemblies could represent interesting new targets for the eventual development of original antibacterials.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Parede Celular/química , Peptidoglicano/biossíntese
12.
Artigo em Inglês | MEDLINE | ID: mdl-29866865

RESUMO

The activities of four oxadiazoles were investigated with 210 methicillin-resistant Staphylococcus aureus (MRSA) strains. MIC50 and MIC90 values of 1 to 2 and 4 µg/ml, respectively, were observed. We also evaluated the activity of oxadiazole ND-421 against other staphylococci and enterococci and in the presence of oxacillin for selected MRSA strains. The MIC for ND-421 is lowered severalfold in combination with oxacillin, as they synergize. The MIC90 of ND-421 against vancomycin-resistant enterococci is ≤1 µg/ml.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxidiazóis/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/química , Cefalosporinas/farmacologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Oxidiazóis/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/crescimento & desenvolvimento , Staphylococcus saprophyticus/efeitos dos fármacos , Staphylococcus saprophyticus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Ceftarolina
13.
Artigo em Inglês | MEDLINE | ID: mdl-29712652

RESUMO

Penicillin-binding proteins (PBPs) are the high-affinity target sites of all ß-lactam antibiotics in bacteria. It is well known that each ß-lactam covalently binds to and thereby inactivates different PBPs with various affinities. Despite ß-lactams serving as the cornerstone of our therapeutic armamentarium against Klebsiella pneumoniae, PBP binding data are missing for this pathogen. We aimed to generate the first PBP binding data on 13 chemically diverse and clinically relevant ß-lactams and ß-lactamase inhibitors in K. pneumoniae PBP binding was determined using isolated membrane fractions from K. pneumoniae strains ATCC 43816 and ATCC 13883. Binding reactions were conducted using ß-lactam concentrations from 0.0075 to 256 mg/liter (or 128 mg/liter). After ß-lactam exposure, unbound PBPs were labeled by Bocillin FL. Binding affinities (50% inhibitory concentrations [IC50]) were reported as the ß-lactam concentrations that half-maximally inhibited Bocillin FL binding. PBP occupancy patterns by ß-lactams were consistent across both strains. Carbapenems bound to all PBPs, with PBP2 and PBP4 as the highest-affinity targets (IC50, <0.0075 mg/liter). Preferential PBP2 binding was observed by mecillinam (amdinocillin; IC50, <0.0075 mg/liter) and avibactam (IC50, 2 mg/liter). Aztreonam showed high affinity for PBP3 (IC50, 0.06 to 0.12 mg/liter). Ceftazidime bound PBP3 at low concentrations (IC50, 0.06 to 0.25 mg/liter) and PBP1a/b at higher concentrations (4 mg/liter), whereas cefepime bound PBPs 1 to 4 at more even concentrations (IC50, 0.015 to 2 mg/liter). These PBP binding data on a comprehensive set of 13 clinically relevant ß-lactams and ß-lactamase inhibitors in K. pneumoniae enable, for the first time, the rational design and optimization of double ß-lactam and ß-lactam-ß-lactamase inhibitor combinations.


Assuntos
Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Andinocilina/metabolismo , Andinocilina/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/metabolismo , Carbapenêmicos/farmacologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Análise de Componente Principal , beta-Lactamas/metabolismo
14.
Arch Insect Biochem Physiol ; 99(1): e21477, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29926517

RESUMO

Lepidopterans are known to have different pheromone-binding proteins with differential expression patterns that facilitate specific signal transduction of semiochemicals. Two PBPs of the Asian gypsy moth, Lymantria dispar, were reported to express in both females and males, but their physiological functions were unknown. Results showed that LdisPBP1 and LdisPBP2 were expressed in the sensilla trichodea of males and the s. trichodea and s. basiconica of females. When LdisPBP1 gene was targeted by RNA interference (RNAi) in males, the expression of LdisPBP1 and LdisPBP2 decreased by 69 and 76%, respectively, and when LdisPBP2 gene was targeted by RNAi, they decreased by 60 and 42%, respectively. In females, after treatment with LdisPBP1 dsRNA, LdisPBP1 and LdisPBP2 levels were reduced by 26 and 69%, respectively, and LdisPBP2 dsRNA reduced the relative expression of them by 4 and 62%, respectively. The expression of LdisPBP1 and LdisPBP2 was interdependent. Electroantennogram (EAG) recordings showed that LdisPBPs participate in the recognition of the sex pheromone in males, and the sex pheromone and plant volatiles in females. The function of LdisPBPs represents the sex-specific roles.


Assuntos
Proteínas de Transporte/metabolismo , Expressão Gênica , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Atrativos Sexuais/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Feminino , Masculino , Sensilas/metabolismo
15.
Biochim Biophys Acta ; 1828(11): 2691-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23916586

RESUMO

HAMLET/BAMLET (Human/Bovine α-Lactalbumin Made Lethal to Tumors) is a tumoricidal substance composed of partially unfolded human/bovine α-lactalbumin (HLA/BLA) and several oleic acid (OA) molecules. The HAMLET mechanism of interaction involves an insufficiently understood effect on the membrane or its embedded components. We examined the effect of BLAOA (bovine α-lactalbumin complexed with oleic acid, a HAMLET-like substance) and its individual components on cells and artificial lipid membranes using viability staining and metabolic dyes, fluorescence spectroscopy, leakage integrity assays and microscopy. Our results show a dose-dependency of OA used to prepare BLAOA on its ability to induce tumor cell death, and a correlation between leakage and cell death. BLAOA incorporates into the membrane, tightens the lipid packing and lowers their solvent accessibility. Fluorescence imaging reveals that giant unilamellar vesicles (GUVs) develop blebs and eventually collapse upon exposure to BLAOA, indicating that the lipid packing reorganization can translate into observable morphological effects. These effects are observed to be local in GUVs, and a tightly packed and solvent-shielded lipid environment is associated with leakage and GUV disruption. Furthermore, the effects of BLAOA on membrane are pH dependent, with an optimum of activity on artificial membranes near neutral pHs. While BLA alone is effective at membrane disruption at acidic pHs, OA is ineffective in a pH range of 4.5 to 9.1. Taken together, this supports a model where the lipid, fatty acid and protein components enhance each other's ability to affect the overall integrity of the membrane.


Assuntos
Lactalbumina/farmacologia , Lipídeos de Membrana/metabolismo , Ácido Oleico/farmacologia , Animais , Bovinos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lactalbumina/química , Lactalbumina/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Espectrometria de Fluorescência , Lipossomas Unilamelares/metabolismo
16.
Antibiotics (Basel) ; 13(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38247624

RESUMO

Low-affinity PBP4, historically linked to penicillin resistance in Enterococcus faecalis, may still have affinity for novel cephalosporins. Ceftobiprole (BPR) is a common therapeutic choice, even with PBP4-related overexpression and amino acid substitution due to mutations. Our study aims to explore the interaction between BPR and High-Molecular-Mass (HMM) low-reactive PBPs in Penicillin-Resistant-Ampicillin-Susceptible/Ceftobiprole Non-Susceptible (PRAS/BPR-NS) E. faecalis clinical isolates. We conducted competition assays examining class A and B HMM PBPs from four PRAS/BPR-NS E. faecalis strains using purified membrane proteins and fluorescent penicillin (Bocillin FL), in treated and untreated conditions. Interaction strength was assessed calculating the 50% inhibitory concentration (IC50) values for ceftobiprole, by analyzing fluorescence intensity trends. Due to its low affinity, PBP4 did not display significant acylation among all strains. Moreover, both PBP1a and PBP1b showed a similar insensitivity trend. Conversely, other PBPs showed IC50 values ranging from 1/2-fold to 4-fold MICs. Upon higher BPR concentrations, increased percentages of PBP4 inhibition were observed in all strains. Our results support the hypothesis that PBP4 is necessary but not sufficient for BPR resistance, changing the paradigm for enterococcal cephalosporin resistance. We hypothesize that cooperation between class B PBP4 and at least one bifunctional class A PBP could be required to synthesize peptidoglycan and promote growth.

17.
Sci Rep ; 14(1): 21179, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261547

RESUMO

Sol g 2, a major protein found in the venom of the tropical fire ant (Solenopsis geminata), is well-known for its ability to bind various hydrophobic molecules. In this study, we investigate the binding activity of recombinant Sol g 2.1 protein (rSol g 2.1) with potential molecules, including (E)-ß-Farnesene, α-Caryophyllene, and 1-Octen-3-ol at different pH levels (pH 7.4 and 5.5) using fluorescence competitive binding assays (FCBA). Our results revealed that Sol g 2.1 protein has higher affinity binding with these ligands at neutral pH. Relevance to molecular docking and molecular dynamics simulations were utilized to provide insights into the stability and conformational dynamics of Sol g 2.1 and its ligand complexes. After simulation, we found that Sol g 2.1 protein has higher affinity binding with these ligands as well as high structural stability at pH 7.4 than at an acidic pH level, indicating by RMSD, RMSF, Rg, SASA, and principal component analysis (PCA). Additionally, the Sol g 2.1 protein complexes at pH 7.4 showed significantly lower binding free energy (∆Gbind) and higher total residue contributions, particularly from key non-polar amino acids such as Trp36, Met40, Cys62, and Ile104, compared to the lower pH environment. These explain why they exhibited higher binding affinity than the lower pH. Therefore, we suggested that Sol g 2.1 protein is a pH-responsive carrier protein. These findings also expand our understanding of protein-ligand interactions and offer potential avenues for the development of innovative drug delivery strategies targeting Sol g 2.1 protein.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Concentração de Íons de Hidrogênio , Ligantes , Animais , Simulação de Acoplamento Molecular , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Formigas/metabolismo
18.
J Antimicrob Chemother ; 68(7): 1567-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23508619

RESUMO

OBJECTIVES: Successful clones of Neisseria gonorrhoeae multiantigen sequence typing sequence type (ST) 1407 and ST1407-related genotypes have been reported to cause cefixime and ceftriaxone treatment failure in many countries. We characterized the 47 isolates of a strain cluster of ST4378, a genotype that differs in the porB sequence by only one nucleotide from ST1407, in Taiwan during April 2006 to June 2012. METHODS: We identified 47 ST4378 isolates among our 2357 total isolates from the Gonococci-National Isolate Collection for Epidemiology. The corresponding patients' medical records were collected. The 47 isolates were further typed by multilocus sequence typing. Genes involved in ß-lactam (ponA), quinolone (gyrA and parC) and multidrug (mtrR, porB1b and pilQ) resistance were sequenced. Antimicrobial susceptibility was determined by the disc diffusion test and Etest. RESULTS: Cefixime MICs for the 47 isolates ranged from 0.016 to 0.19 mg/L and ceftriaxone MICs ranged from 0.012 to 0.094 mg/L. Forty-six of the 47 isolates had a mosaic penA allele type XXXIV and one had a new allele type XL, which appeared to be a recombinant of mosaic penA type XXXIV and non-mosaic penA type II. All of the isolates harboured nearly identical polymorphism in the ponA, gyrA, parC, mtrR, porB1b and pilQ genes. Among the 33 patients with known medical records, 25 (76%) were men who have sex with men (MSM), 3 (9%) were bisexual and 5 (15%) were heterosexual. Fourteen (42%) of the 33 patients had HIV, 8 (24%) had syphilis and 7 (21%) had both infections. CONCLUSIONS: This is the first report of a cluster of ST1407-related strains in Taiwan. ST4378 is a genotype that may develop to cause third-generation cephalosporin treatment failures. Our results showed that ST4378 strains primarily transmitted in a high-risk MSM/bisexual network. The potential of these strains to become untreatable and spread to other low-risk sexual networks should be closely monitored.


Assuntos
Análise por Conglomerados , Gonorreia/epidemiologia , Gonorreia/microbiologia , Tipagem Molecular , Neisseria gonorrhoeae/classificação , Neisseria gonorrhoeae/genética , Antibacterianos/farmacologia , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Genótipo , Gonorreia/transmissão , Humanos , Masculino , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Dados de Sequência Molecular , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/isolamento & purificação , Análise de Sequência de DNA , Taiwan/epidemiologia
19.
J Antimicrob Chemother ; 68(7): 1533-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23449828

RESUMO

OBJECTIVES: Group B Streptococcus (GBS; Streptococcus agalactiae) has been regarded as uniformly susceptible to penicillins. However, we recently reported the existence of GBS with reduced penicillin susceptibility (PRGBS), with amino acid substitutions in penicillin-binding protein (PBP) 2X. Although most PRGBS show high MICs of ceftizoxime (4-64 mg/L) and cefotaxime (0.12-1 mg/L), those for strain B1 are exceptionally high (ceftizoxime MIC ≥256 mg/L and cefotaxime MIC 2 mg/L). We previously found an amino acid substitution (G539S) neighbouring the conserved K540TG motif in PBP1A in addition to the PRGBS-specific amino acid substitution Q557E in PBP2X of B1. The aim of this study was to reveal the effect of the amino acid substitutions in PBP1A and PBP2X of B1 on the high cephalosporin resistance. METHODS: A ceftizoxime competition assay was performed to reveal the PBPs that are the main targets of ceftizoxime. We generated two allelic exchange mutants from ß-lactam-susceptible GBS BAA-611. BAA-611 (B1PBP2X) contained the PBP2X gene derived from B1 and BAA-611 (B1PBP2X, B1PBP1A) contained both the PBP2X and the PBP1A gene derived from B1. These allelic exchange mutants and strain B1 were subjected to susceptibility testing. RESULTS: The ceftizoxime competition assay revealed that PBP1A and PBP2X were the main targets of ceftizoxime. Although the MICs of ceftizoxime and cefotaxime for BAA-611 (B1PBP2X) were 64 and 0.5 mg/L, respectively, BAA-611 (B1PBP2X, B1PBP1A) showed high cephalosporin resistance (ceftizoxime MIC ≥256 mg/L and cefotaxime MIC 2 mg/L) comparable to B1. CONCLUSIONS: The high cephalosporin resistance of GBS was caused by amino acid substitutions in PBP1A and PBP2X.


Assuntos
Resistência às Cefalosporinas , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/enzimologia , Substituição de Aminoácidos , Testes de Sensibilidade Microbiana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto
20.
Biomol NMR Assign ; 17(2): 223-227, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37498448

RESUMO

Ostrinia nubilalis, also known as European Corn Borer (ECB), is a serious pest in Europe and North America, as well as in Central Asia and Northern Africa. It damages a variety of agricultural crops such as corn, oats, buckwheat, millet, and soybeans. causing annually at least one billion dollars in loss. The Ostrinia nubilalis pheromone-binding protein3 (OnubPBP3), preferentially expressed in the male moth antenna, has been implicated in the detection of the female-secreted pheromone blend during the mating process. Understanding the structure of and function of OnubPBP3, including the mechanism of pheromone binding and its release at the dendritic olfactory neuron (ORN), is essential if integrated pest management through sensory inhibition is to be achieved. We report here the backbone and side-chain resonance assignments of OnubPBP3 at pH 6.5 using various triple resonance NMR experiments on a 13C, 15N-labeled protein sample. The secondary structure of OnubPBP3 consists of six α-helices and an unstructured C-terminus based on backbone chemical shifts.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Masculino , Feminino , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia , Atrativos Sexuais/fisiologia , Ressonância Magnética Nuclear Biomolecular , Mariposas/metabolismo , Feromônios , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA