Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Med ; 30(1): 147, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266959

RESUMO

BACKGROUND: The complex interplay between Sirtuin 1 (SIRT1) and FOXO3 in endometrial cancer (EC) remains understudied. This research aims to unravel the interactions of deacetylase SIRT1 and transcription factor FOXO3 in EC, focusing on their impact on mitophagy and hormone resistance. METHODS: High-throughput sequencing, cell experiments, and bioinformatics tools were employed to investigate the roles and interactions of SIRT1 and FOXO3 in EC. Co-immunoprecipitation (Co-IP) assay was used to assess the interaction between SIRT1 and FOXO3 in RL95-2 cells. Functional assays were used to assess cell viability, proliferation, migration, invasion, apoptosis, and the expression of related genes and proteins. A mouse model of EC was established to evaluate tumor growth and hormone resistance under different interventions. Immunohistochemistry and TUNEL assays were used to assess protein expression and apoptosis in tumor tissues. RESULTS: High-throughput transcriptome sequencing revealed a close association between SIRT1, FOXO3, and EC development. Co-IP showed a protein-protein interaction between SIRT1 and FOXO3. Overexpression of SIRT1 enhanced FOXO3 deacetylation and activity, promoting BNIP3 transcription and PINK1/Parkin-mediated mitophagy, which in turn promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro, as well as increased tumor growth and hormone resistance in vivo. These findings highlighted SIRT1 as an upstream regulator and potential therapeutic target in EC. CONCLUSION: This study reveals a novel molecular mechanism underlying the functional relevance of SIRT1 in regulating mitophagy and hormone resistance through the deacetylation of FOXO3 in EC, thereby providing valuable insights for new therapeutic strategies.


Assuntos
Neoplasias do Endométrio , Proteína Forkhead Box O3 , Mitofagia , Sirtuína 1 , Feminino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Humanos , Mitofagia/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Animais , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Linhagem Celular Tumoral , Camundongos , Acetilação , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Movimento Celular , Resistencia a Medicamentos Antineoplásicos/genética
2.
BMC Cardiovasc Disord ; 23(1): 582, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012584

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is one of the main reasons for poor prognosis in patients with ischemic cardiomyopathy (ICM). To date, the mechanism remains unknown. As members of the silent information regulator 2 (SIR2) family, both SIRT1 and SIRT3 have been shown to play critical roles in protecting cardiomyocytes against MIRI, but their specific protective mechanism, their interact between the two and their relationship with ferroptosis are still unclear. Hence, in this study, we investigated the interact and specific mechanism of SIRT1 and SIRT3 in protecting cardiomyocytes against MIRI, as well as their association with ferroptosis. METHODS: Bioinformatics analysis methods were used to explore the expression of SIRT1 and SIRT3 during MIRI, and then a cell hypoxia/reoxygenation injury model was constructed to verify the results. Then, Pearson correlation analysis was further used to explore the relationship between SIRT1 and SIRT3, whose roles in the regulation of ferroptosis were also analysed by gene knock down, Western Blotting and flow cytometry. Several biomarkers, such as Fe2+ concentration, lipid peroxidation marker MDA and mitochondrial membrane potential (MMP), were used to evaluate changes in ferroptosis. RESULTS: The expression of SIRT1 and SIRT3 was abnormal during MIRI, and SIRT1 was significantly negatively correlated with SIRT3 in the SIRT1-SIRT3 axis. Further analysis revealed that the SIRT1-SIRT3 axis was closely correlated with ferroptosis, and its silencing effectively increase the incidence of ferroptosis. Furthermore, SIRT1-SIRT3 axis silencing was accompanied by changes in PINK1, Parkin, P62/SQSTM1 and LC3 expression. PINK1 silencing significantly increased the incidence of ferroptosis, while resveratrol (Res) and/or honokiol (HKL) effectively reversed the outcome. CONCLUSION: Abnormalities in the SIRT1-SIRT3 axis promote MIRI through ferroptosis caused by silencing the PINK1/Parkin signaling pathway.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Sirtuína 3 , Humanos , Traumatismo por Reperfusão Miocárdica/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ferroptose/genética , Transdução de Sinais , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Physiol Biochem ; 49(5): 1825-1839, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30231241

RESUMO

BACKGROUND/AIMS: Sonodynamic therapy (SDT), based on the synergistic effect of low-intensity ultrasound and sonosensitizer, is a potential approach for non-invasive treatment of cancers. In SDT, mitochondria played a crucial role in cell fate determination. However, mitochondrial activities and their response to SDT remain elusive. The purpose of this study was to examine the response of mitochondria to SDT in tumor cells. METHODS: A human breast adenocarcinoma cell line - MCF-7 cells were subjected to 5-aminolevulinic acid (ALA)-SDT, with an average ultrasonic intensity of 0.25W/cm2. Mitochondrial dynamics and redox balance were examined by confocal immunofluorescence microscopy and western blot. The occurrence of mitophagy was determined by confocal immunofluorescence microscopy. RESULTS: Our results showed that ALA-SDT could induce mitochondrial dysfunction through mitochondrial depolarization and fragmentation and lead to mitophagy. The Parkin-dependent signaling pathway was involved and promoted resistance to ALA-SDT induced cell death. Finally, excessive production of ROS was found to be necessary for the initiation of mitophagy. CONCLUSION: Taken together, we conclude that ROS produced by 5-ALA-SDT could initiate PINK1/Parkin-mediated mitophagy which may exert a protective effect against 5-ALA-SDT-induced cell death in MCF-7 cells.


Assuntos
Mitofagia/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Proteínas Quinases/metabolismo , Sonicação/métodos , Ubiquitina-Proteína Ligases/metabolismo , Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
4.
Phytomedicine ; 126: 155434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367424

RESUMO

OBJECTIVE: This study investigated whether perinatal exposure to nonylphenol (NP) induces mitochondrial autophagy (i.e., mitophagy) damage in neonatal rat cardiomyocytes (NRCMs) and whether the PINK1/Parkin signaling pathway is involved in NP-induced primary cardiomyocyte injury. METHODS AND RESULTS: In vivo: Perinatal NP exposure increased apoptosis and mitochondrial damage in NRCMs. Mitochondrial swelling and autophagosome-like structures with multiple concentric membranes were observed in the 100 mg/kg NP group, with an increase in the number of autophagosomes. Disorganized fiber arrangement and elevated serum myocardial enzyme levels were observed with increasing NP dosage. Additionally, NP exposure led to increased MDA levels and decreased SOD activity and ATP levels in myocardial tissue. The mRNA expression levels of autophagy-related genes, including Beclin-1, p62, and LC3B, as well as the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, p62, LC3-I, LC3-II, and LC3-II/I) and apoptosis-related proteins (Bax and caspase-3), increased, whereas the expression levels of the mitochondrial membrane protein TOMM20 and the anti-apoptotic protein Bcl-2 decreased. In vitro: NP increased ROS levels, LDH release, and decreased ATP levels in NRCMs. CsA treatment significantly inhibited the expression of autophagy-related proteins (Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased the expression levels of TOMM20 and Bcl-2 proteins, increased cellular ATP levels, and inhibited LDH release. The inhibition of the PINK1/Parkin signaling pathway suppressed the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased TOMM20 and Bcl-2 protein expression, increased ATP levels, and decreased LDH levels in NRCMs. CONCLUSIONS: This study is novel in reporting that perinatal NP exposure induced myocardial injury in male neonatal rats, thereby inducing mitophagy. The PINK1/Parkin signaling pathway was involved in this injury by regulating mitophagy.


Assuntos
Proteínas Reguladoras de Apoptose , Autofagia , Fenóis , Ratos , Animais , Masculino , Caspase 3/metabolismo , Proteína Beclina-1/metabolismo , Proteína X Associada a bcl-2 , Autofagia/fisiologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Trifosfato de Adenosina
5.
J Ethnopharmacol ; 319(Pt 3): 117338, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890804

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular disease (CVD) and fatigue are two common diseases endangering human life and health that may interact and reinforce one another. Myocardial infarction survivors frequently experience fatigue, and acute myocardial infarction (AMI) is one of the most common cardiovascular diseases that cause fatigue-induced sudden death. Sheng Mai Yin (SMY), a Chinese medicine prescription, is traditionally used for the treatment of diabetes and cardiovascular disease, and has been demonstrated to reduce fatigue and safeguard cardiac function. AIM OF THE STUDY: This study aims to investigate the effects and underlying mechanisms of SMY in treating fatigue and AMI. MATERIALS AND METHODS: The pharmacological mechanisms of SMY in treating fatigue and AMI were predicted by bioinformatics and network pharmacology methods. After administering SMY at high, medium and low doses, the swimming time to exhaustion, hemoglobin level, serological parameters and hypoxia tolerance time were detected in C57BL/6N mice, and the left ventricular ejection fractions (LVEF), left ventricular fractional shortening (LVFS), grasp strength, cardiac histopathology, serological parameters and the expression of PINK1 and Parkin proteins were examined in Wistar rats. RESULTS: 371 core targets for SMY and 282 disease targets for fatigue and AMI were obtained using bioinformatics and network pharmacology methods. Enrichment analysis of target genes revealed that SMY might interfere with fatigue and AMI through biological processes such as mitochondrial autophagy, apoptosis, and oxidative stress. For in vivo experiments, SMY showed significant anti-fatigue and hypoxia tolerance effects in mice; It also improved the cardiac function and grasp strength, decreased their cardiac index, myocardial injury and fibrosis degree, and induced serological parameters levels and the expression of PTEN-induced putative kinase 1 (PINK1) and Parkin proteins in myocardium, suggesting that SMY may exert cardioprotective effects in a joint rat model of fatigue and AMI by inhibiting excessive mitochondrial autophagy. CONCLUSION: This study revealed the anti-fatigue, anti-hypoxia and cardioprotective effects of SMY in a joint model of fatigue-AMI, and the pharmacological mechanism may be related to the inhibition of mitochondrial autophagy in cardiomyocytes through the PINK1/Parkin pathway. The discoveries may provide new ideas for the mechanism study of traditional Chinese medicine, especially complex prescriptions, in treating fatigue and AMI.


Assuntos
Infarto do Miocárdio , Humanos , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Ratos Wistar , Infarto do Miocárdio/tratamento farmacológico , Hipóxia , Ubiquitina-Proteína Ligases , Proteínas Quinases
6.
Eur J Pharmacol ; 974: 176633, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703975

RESUMO

Cardiac arrest (CA) remains a leading cause of death, with suboptimal survival rates despite efforts involving cardiopulmonary resuscitation and advanced life-support technology. Post-resuscitation myocardial dysfunction (PRMD) is an important determinant of patient outcomes. Myocardial ischemia/reperfusion injury underlies this dysfunction. Previous reports have shown that ruthenium red (RR) has a protective effect against cardiac ischemia-reperfusion injury; however, its precise mechanism of action in PRMD remains unclear. This study investigated the effects of RR on PRMD and analyzed its underlying mechanisms. Ventricular fibrillation was induced in rats, which were then subjected to cardiopulmonary resuscitation to establish an experimental CA model. At the onset of return of spontaneous circulation, RR (2.5 mg/kg) was administered intraperitoneally. Our study showed that RR improved myocardial function and reduced the production of oxidative stress markers such as malondialdehyde (MDA), glutathione peroxidase (GSSG), and reactive oxygen species (ROS) production. RR also helped maintain mitochondrial structure and increased ATP and GTP levels. Additionally, RR effectively attenuated myocardial apoptosis. Furthermore, we observed downregulation of proteins closely related to mitophagy, including ubiquitin-specific protease 33 (USP33) and P62, whereas LC3B (microtubule-associated protein light chain 3B) was upregulated. The upregulation of mitophagy may play a critical role in reducing myocardial injury. These results demonstrate that RR may attenuate PRMD by promoting mitophagy through the inhibition of USP33. These effects are likely mediated through diverse mechanisms, including antioxidant activity, apoptosis suppression, and preservation of mitochondrial integrity and energy metabolism. Consequently, RR has emerged as a promising therapeutic approach for addressing post-resuscitation myocardial dysfunction.


Assuntos
Modelos Animais de Doenças , Parada Cardíaca , Mitofagia , Ratos Sprague-Dawley , Rutênio Vermelho , Animais , Mitofagia/efeitos dos fármacos , Parada Cardíaca/complicações , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/metabolismo , Parada Cardíaca/fisiopatologia , Ratos , Masculino , Rutênio Vermelho/farmacologia , Rutênio Vermelho/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Reanimação Cardiopulmonar , Regulação para Cima/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia
7.
Biochim Biophys Acta Gen Subj ; 1868(7): 130612, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626830

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by rapid onset and widespread inflammation in the lungs, often leading to respiratory failure. These conditions can be triggered by various factors, resulting in a severe inflammatory response within the lungs. Resveratrol, a polyphenolic compound found in grapes and peanuts, is renowned for its potent antioxidative and anti-inflammatory properties. In this study, we investigated how resveratrol protects against lipopolysaccharide (LPS)-induced ALI in mice. We established mouse models of LPS-induced ALI and inflammation in bronchoalveolar lavage fluid (BALF) macrophages. Through histopathological examination, immunofluorescence, western blot, enzyme-linked immunosorbent assay (ELISA), and transmission electron microscopy (TEM), we assessed the impact of resveratrol on the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes and the process of mitophagy. Our findings indicate that resveratrol significantly mitigated the lung injury and inflammation caused by LPS. This was achieved by inhibiting the oligomerization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the activation of NLRP3 inflammasomes. Resveratrol also reduced the levels of IL-1ß and IL-18 in serum and BALF, decreased caspase-1 expression, and diminished macrophage pyroptosis. Furthermore, it upregulated Pink1, Parkin, Beclin-1, Autophagy-Related 5 (Atg5), and Microtubule-Associated Proteins 1 A/1B Light Chain 3B (LC3B-II), thereby enhancing mitophagy. Conversely, mitophagy was inhibited by Pink1 siRNA. In conclusion, resveratrol ameliorated ALI in mice, potentially by inhibiting the activation of NLRP3 inflammasomes, activating the Pink1/Parkin pathway, and promoting mitophagy.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases , Resveratrol , Ubiquitina-Proteína Ligases , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia/efeitos dos fármacos , Camundongos , Resveratrol/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Lipopolissacarídeos , Líquido da Lavagem Broncoalveolar/química
8.
Free Radic Res ; 56(3-4): 316-327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35786375

RESUMO

Intervertebral disk degeneration (IDD) is a common aging disease. Excessive apoptosis of nucleus pulposus (NP) cells has been widely considered a main contributor to IDD. Emerging science has shown that autophagy plays a protective role against apoptosis under oxidative stress. Vitamin D receptor (VDR) is a steroid hormone receptor that can regulate autophagy. The purpose of this study was to clarify whether VDR alleviates IDD by promoting autophagy. H2O2 stimulation was used to establish oxidative stress conditions. Initially, the expression level of VDR in human degenerative NP tissues was measured by immunohistochemistry. In addition, the CRISPR-dCas9-VPR system and siRNA were utilized to upregulate or downregulate VDR and Parkin expression, respectively. Autophagic and apoptotic markers were determined by Western blotting and RT-qPCR. Transmission electron microscopy was used to monitor the occurrence of autophagy in rat NP cells. VDR expression was downregulated in human degenerative NP tissues and H2O2-stimulated rat NP cells, indicating a negative correlation between VDR expression and IDD. VDR overexpression promoted mitophagy and prevented apoptosis and mitochondrial injury under oxidative stress. Additionally, mitophagy inhibition by 3-MA abolished the protective effect of VDR activation in vitro. Furthermore, VDR activation promoted mitophagy via the PINK1/Parkin pathway in H2O2-treated NP cells. This study demonstrates that VDR activation ameliorates oxidative damage and decreases NP cell apoptosis by promoting PINK1/Parkin-dependent mitophagy, indicating that VDR may serve as a promising therapeutic target in the management of IDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Apoptose , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Mitofagia , Núcleo Pulposo/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Proteínas Quinases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/uso terapêutico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia
9.
Nutrients ; 14(7)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406117

RESUMO

Vitamin K2, a natural fat-soluble vitamin, is a potent neuroprotective molecule, owing to its antioxidant effect, but its mechanism has not been fully elucidated. Therefore, we stimulated SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) in a proper dose-dependent manner, followed by a treatment of vitamin K2. In the presence of 6-OHDA, cell viability was reduced, the mitochondrial membrane potential was decreased, and the accumulation of reactive oxygen species (ROS) was increased. Moreover, the treatment of 6-OHDA promoted mitochondria-mediated apoptosis and abnormal mitochondrial fission and fusion. However, vitamin K2 significantly suppressed 6-OHDA-induced changes. Vitamin K2 played a significant part in apoptosis by upregulating and downregulating Bcl-2 and Bax protein expressions, respectively, which inhibited mitochondrial depolarization, and ROS accumulation to maintain mitochondrial structure and functional stabilities. Additionally, vitamin K2 significantly inhibited the 6-OHDA-induced downregulation of the MFN1/2 level and upregulation of the DRP1 level, respectively, and this enabled cells to maintain the dynamic balance of mitochondrial fusion and fission. Furthermore, vitamin K2 treatments downregulated the expression level of p62 and upregulated the expression level of LC3A in 6-OHDA-treated cells via the PINK1/Parkin signaling pathway, thereby promoting mitophagy. Moreover, it induced mitochondrial biogenesis in 6-OHDA damaged cells by promoting the expression of PGC-1α, NRF1, and TFAM. These indicated that vitamin K2 can release mitochondrial damage, and that this effect is related to the participation of vitamin K2 in the regulation of the mitochondrial quality-control loop, through the maintenance of the mitochondrial quality-control system, and repair mitochondrial dysfunction, thereby alleviating neuronal cell death mediated by mitochondrial damage.


Assuntos
Apoptose , Mitocôndrias , Oxidopamina , Vitamina K 2 , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidopamina/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 2/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA