Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; 121(12): 1334-1344, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924427

RESUMO

Reduced plasma vitamin D (VD) levels may contribute to excessive white adipose tissue, insulin resistance (IR) and dyslipidaemia. We evaluated the effect of chronic oral VD supplementation on adiposity and insulin secretion in monosodium glutamate (MSG)-treated rats. During their first 5 d of life, male neonate rats received subcutaneous injections of MSG (4 g/kg), while the control (CON) group received saline solution. After weaning, groups were randomly distributed into VD supplemented (12 µg/kg; three times/week) and non-supplemented (NS) rats, forming four experimental groups (n 15 rats/group): CON-NS, CON-VD, MSG-NS and MSG-VD. At 76 d of life, rats were submitted to an oral glucose tolerance test (OGTT; 2 g/kg), and at 86 d, obesity, IR and plasma metabolic parameters were evaluated. Pancreatic islets were isolated for glucose-induced insulin secretion (GIIS), cholinergic insulinotropic response and muscarinic 3 receptor (M3R), protein kinase C (PKC) and protein kinase A (PKA) expressions. Pancreas was submitted to histological analyses. VD supplementation decreased hyperinsulinaemia (86 %), hypertriacylglycerolaemia (50 %) and restored insulin sensibility (89 %) in MSG-VD rats, without modifying adiposity, OGTT or GIIS, compared with the MSG-NS group. The cholinergic action was reduced (57 %) in islets from MSG-VD rats, without any change in M3R, PKA or PKC expression. In conclusion, chronic oral VD supplementation of MSG-obese rats was able to prevent hyperinsulinaemia and IR, improving triacylglycerolaemia without modifying adiposity. A reduced cholinergic pancreatic effect, in response to VD, could be involved in the normalisation of plasma insulin levels, an event that appears to be independent of M3R and its downstream pathways.


Assuntos
Adiposidade/efeitos dos fármacos , Suplementos Nutricionais , Secreção de Insulina/efeitos dos fármacos , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Hipotálamo/metabolismo , Ratos
2.
Br J Nutr ; 116(2): 223-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27264638

RESUMO

The endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.


Assuntos
Antioxidantes/farmacologia , Doenças Cardiovasculares/fisiopatologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , Complicações do Diabetes/sangue , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/etiologia , Óxido Nítrico Sintase/sangue , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/sangue
3.
Nutr Res Rev ; 29(2): 234-248, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27841104

RESUMO

Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.


Assuntos
Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação , Obesidade , Diabetes Mellitus Tipo 2 , Dieta , Humanos
4.
Comput Struct Biotechnol J ; 21: 11-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36514335

RESUMO

Calcium plays a fundamental role in various signaling pathways and cellular processes in the human organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels (LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity. Dysfunction of LTCCs has been implicated in both aging and Alzheimer's Disease (AD), constituting a key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD. However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest targeting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.

5.
Comput Struct Biotechnol J ; 21: 1606-1620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874158

RESUMO

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.

6.
Saudi Dent J ; 34(7): 565-571, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36267534

RESUMO

Purpose: This study aimed to evaluate the neuroprotective ability of the conditioned medium of stem cells from human exfoliated deciduous teeth (CM-SHED) to prevent glutamate-induced apoptosis of neural progenitors. Materials and methods: Neural progenitors were isolated from two-day-old rat brains, and the conditioned medium was obtained from a mesenchymal stem cell SHED. Four groups were examined: neural progenitor cells cultured in neurobasal medium with (N + ) and without (N-) glutamate and glycine, and neural progenitor cells cultured in CM-SHED with (K + ) and without (K-) glutamate and glycine. Results: The expression of GABA A1 receptor (GABAAR1) messenger RNA (mRNA) in neural progenitor measured by real-time quantitative PCR. GABA contents were measured by enzyme-linked immunosorbent assay, whereas the apoptosis markers caspase-3 and 7-aminoactinomycin D were analysed with a Muse® cell analyzer. The viability of neural progenitor cells in the K + group (78.05 %) was higher than the control group N- (73.22 %) and lower in the N + group (68.90 %) than in the control group. The K + group showed the highest GABA content, which significantly differed from that in the other groups, whereas the lowest content was observed in the N + group. The expression level of GABAAR1 mRNA in the K + group was the highest compared to that in the other groups. CM-SHED potently protected the neural progenitors from apoptosis. Conclusions: CM-SHED may effectively prevent glutamate-induced apoptosis of neural progenitors.

7.
Acta Pharm Sin B ; 12(4): 1761-1780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847486

RESUMO

Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.

8.
Front Pharmacol ; 12: 716121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539402

RESUMO

Guhong injection (GHI) is a drug for ischemic stroke created by combining safflower, a traditional Chinese medicine, and aceglutamide, a Western medicine. In this study, we investigated the curative effect of GHI on cerebral ischemia-reperfusion (I/R) injury via the PKC/HIF-1α pathway in rats. Adult male Sprague Dawley rats were randomly divided into seven groups: sham-operated, middle cerebral artery occlusion (MCAO), GHI, nimodipine injection (NMDP), MCAO + LY317615 (PKC inhibitor), GHI + LY317615, and NMDP + LY317615. After establishing an MCAO rat model, we performed neurological deficit testing, 2,3,5-triphenyltetrazolium chloride staining, hematoxylin and eosin (HE) staining, enzyme-linked immunosorbent assay, Western blotting, and q-PCR to detect the brain damage in rats. Compared with the MCAO group, the GHI and GHI + LY317615 group showed neurological damage amelioration as well as decreases in serum hypoxia-inducible factor-1α (HIF-1α), protein kinase C (PKC), and erythropoietin levels; brain HIF-1α and inducible nitric oxide synthase protein expression; and brain HIF-1α and NOX-4 mRNA expression. These effects were similar to those in the positive control groups NMDP and NMDP + LY317615. Thus, our results confirmed GHI can ameliorate cerebral I/R injury in MCAO rats possibly via the PKC/HIF-1α pathway.

9.
Sports Med Health Sci ; 3(2): 70-79, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782161

RESUMO

The ability of physical activity to ameliorate cardiovascular disease and improve cardiovascular health is well accepted, but many aspects of the molecular mechanisms underlying these benefits are incompletely understood. Exercise increases the levels of reactive oxygen species (ROS) through various mechanisms. This triggers the activation of Nrf2, a redox-sensitive transcription factor activated by increases in oxidative stress. Activation of Nrf2 mitigates oxidative stress by increasing the nuclear transcription of many antioxidant genes while also mediating additional beneficial effects through the cytoprotective nature of Nrf2 signaling. Understanding the transcriptional patterns of Nrf2 caused by exercise can help in the design of pharmacological mimicry of the process in patients who are unable to exercise for various reasons.

10.
Front Immunol ; 12: 657393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054821

RESUMO

Human neutrophils express two unique antibody receptors for IgG, the FcγRIIa and the FcγRIIIb. FcγRIIa contains an immunoreceptor tyrosine-based activation motif (ITAM) sequence within its cytoplasmic tail, which is important for initiating signaling. In contrast, FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor with no cytoplasmic tail. Although, the initial signaling mechanism for FcγRIIIb remains unknown, it is clear that both receptors are capable of initiating distinct neutrophil cellular functions. For example, FcγRIIa is known to induce an increase in L-selectin expression and efficient phagocytosis, while FcγRIIIb does not promote these responses. In contrast, FcγRIIIb has been reported to induce actin polymerization, activation of ß1 integrins, and formation of neutrophils extracellular traps (NET) much more efficiently than FcγRIIa. Another function where these receptors seem to act differently is the increase of cytoplasmic calcium concentration. It has been known for a long time that FcγRIIa induces production of inositol triphosphate (IP3) to release calcium from intracellular stores, while FcγRIIIb does not use this phospholipid. Thus, the mechanism for FcγRIIIb-mediated calcium rise remains unknown. Transient Receptor Potential Melastatin 2 (TRPM2) is a calcium permeable channel expressed in many cell types including vascular smooth cells, endothelial cells and leukocytes. TRPM2 can be activated by protein kinase C (PKC) and by oxidative stress. Because we previously found that FcγRIIIb stimulation leading to NET formation involves PKC activation and reactive oxygen species (ROS) production, in this report we explored whether TRPM2 is activated via FcγRIIIb and mediates calcium rise in human neutrophils. Calcium rise was monitored after Fcγ receptors were stimulated by specific monoclonal antibodies in Fura-2-loaded neutrophils. The bacterial peptide fMLF and FcγRIIa induced a calcium rise coming initially from internal pools. In contrast, FcγRIIIb caused a calcium rise by inducing calcium entry from the extracellular medium. In addition, in the presence of 2-aminoethoxydiphenyl borate (2-APB) or of clotrimazole, two inhibitors of TRPM2, FcγRIIIb-induced calcium rise was blocked. fMLF- or FcγRIIa-induced calcium rise was not affected by these inhibitors. These data suggest for the first time that FcγRIIIb aggregation activates TRPM2, to induce an increase in cytoplasmic calcium concentration through calcium internalization in human neutrophils.


Assuntos
Cálcio/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Canais de Cátion TRPM/metabolismo , Sinalização do Cálcio , Citoplasma/imunologia , Citoplasma/metabolismo , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Armadilhas Extracelulares/metabolismo , Imunofluorescência , Proteínas Ligadas por GPI/metabolismo , Humanos , Modelos Biológicos , NADPH Oxidases/metabolismo , Oxirredução , Fagocitose/imunologia , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Biochem Biophys Rep ; 27: 101041, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34189278

RESUMO

Coronin-1, a hematopoietic cell-specific actin-binding protein, is thought to be involved in the phagocytic process through its interaction with actin filaments. The dissociation of coronin-1 from phagosomes after its transient accumulation on the phagosome surface is associated with lysosomal fusion. We previously reported that 1) coronin-1 is phosphorylated by protein kinase C (PKC), 2) coronin-1 has two phosphorylation sites, Ser-2 and Thr-412, and 3) Thr-412 of coronin-1 is phosphorylated during phagocytosis. In this study, we examined which PKC isoform is responsible for the phosphorylation of coronin-1 at Thr-412 by using isotype-specific PKC inhibitors and small interfering RNAs (siRNAs). Thr-412 phosphorylation of coronin-1 was suppressed by Gö6976, an inhibitor of PKCα and PKCßI. This phosphorylation was attenuated by siRNA for PKCα, but not by siRNA for PKCß. Furthermore, Thr-412 of coronin-1 was phosphorylated by recombinant PKCα in vitro, but not by recombinant PKCß. We next examined the effects of Gö6976 on the intracellular distribution of coronin-1 in HL60 cells during phagocytosis. The confocal fluorescence microscopic observation showed that coronin-1 was not dissociated from phagosomes in Gö6976-treated cells. These results indicate that phosphorylation of coronin-1 at Thr-412 by PKCα regulates intracellular distribution during phagocytosis.

12.
Acta Pharm Sin B ; 11(11): 3433-3446, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900528

RESUMO

RAS, a member of the small GTPase family, functions as a binary switch by shifting between inactive GDP-loaded and active GTP-loaded state. RAS gain-of-function mutations are one of the leading causes in human oncogenesis, accounting for ∼19% of the global cancer burden. As a well-recognized target in malignancy, RAS has been intensively studied in the past decades. Despite the sustained efforts, many failures occurred in the earlier exploration and resulted in an 'undruggable' feature of RAS proteins. Phosphorylation at several residues has been recently determined as regulators for wild-type and mutated RAS proteins. Therefore, the development of RAS inhibitors directly targeting the RAS mutants or towards upstream regulatory kinases supplies a novel direction for tackling the anti-RAS difficulties. A better understanding of RAS phosphorylation can contribute to future therapeutic strategies. In this review, we comprehensively summarized the current advances in RAS phosphorylation and provided mechanistic insights into the signaling transduction of associated pathways. Importantly, the preclinical and clinical success in developing anti-RAS drugs targeting the upstream kinases and potential directions of harnessing allostery to target RAS phosphorylation sites were also discussed.

13.
J Tradit Complement Med ; 11(6): 471-480, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765511

RESUMO

BACKGROUND AND AIM: Phytoestrogens are traditionally used for cardiovascular risks but direct effects on the ischemic heart remain unclear. Plants with phytoestrogens are used for reducing menopausic symptoms and they could also be cardioprotectives. Here we investigated whether maca (Lepidium meyenii) contains isoflavones and prevents cardiac stunning, in comparison to soy isoflavones. EXPERIMENTAL PROCEDURE: Both products were orally and daily administered to rats during 1 week before exposing isolated hearts to ischemia/reperfusion (I/R). Young male (YM), female (YF) and aged female (AgF) rats treated with maca (MACA, 1 g/kg/day) or soy isoflavones (ISOF, 100 mg/kg/day) were compared to acute daidzein (DAZ, 5 mg/kg i.p.) and non-treated rat groups. Isolated ventricles were perfused inside a calorimeter to simultaneously measure contractile and calorimetrical signals before and during I/R. RESULTS AND CONCLUSIONS: Maca has genistein and daidzein. MACA and ISOF improved the post-ischemic contractile recovery (PICR) and muscle economy (P/Ht) in YM and YF hearts, but not in AgF hearts. DAZ improved PICR and P/Ht more in YM than in YF. The mKATP channels blockade reduced both PICR and P/Ht in DAZ-treated YM hearts, without affecting them in ISOF or MACA-treated YM hearts. In MACA treated YF hearts, the simultaneous blockade of NOS and mKATP channels, or the mNCX blockade reduced cardioprotection. Results show that subacute oral treatment with maca or with soy isoflavones was strongly preventive of cardiac ischemic dysfunction, more than the acute administration of a pure isoflavone (daidzein, genistein). Maca induced synergistic and complex mechanisms which prevented mitochondrial calcium overload.

14.
Acta Pharm Sin B ; 11(2): 309-321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643814

RESUMO

Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.

15.
J Adv Res ; 34: 43-63, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024180

RESUMO

Introduction: Recently, Nrf2/HO-1 has received extensive attention as the main regulatory pathway of intracellular defense against oxidative stress and is considered an ideal target for alleviating endothelial cell (EC) injury. Objectives: This paper aimed to summarized the natural monomers/extracts that potentially exert protective effects against oxidative stress in ECs. Methods: A literature search was carried out regarding our topic with the keywords of "atherosclerosis" or "Nrf2/HO-1" or "vascular endothelial cells" or "oxidative stress" or "Herbal medicine" or "natural products" or "natural extracts" or "natural compounds" or "traditional Chinese medicines" based on classic books of herbal medicine and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, GoogleScholar, BaiduScholar, and others. Then, we analyzed the possible molecular mechanisms for different types of natural compounds in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. In addition, perspectives for possible future studies are discussed. Results: These agents with protective effects against oxidative stress in ECs mainly include phenylpropanoids, flavonoids, terpenoids, and alkaloids. Most of these agents alleviate cell apoptosis in ECs due to oxidative stress, and the mechanisms are related to Nrf2/HO-1 signaling activation. However, despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis (AS) and other CVDs based on these agents will require more detailed preclinical and clinical studies. Conclusion: Our present paper provides updated information of natural agents with protective activities on ECs against oxidative stress by activating Nrf2/HO-1. We hope this review will provide some directions for the further development of novel candidate drugs from natural agents for the treatment of AS and other CVDs.


Assuntos
Aterosclerose , Preparações Farmacêuticas , Aterosclerose/tratamento farmacológico , Células Endoteliais/metabolismo , Heme Oxigenase-1/metabolismo , Medicina Herbária , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
16.
Acta Pharm Sin B ; 11(9): 2749-2767, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589395

RESUMO

Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.

17.
Saudi J Biol Sci ; 27(8): 2139-2142, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714041

RESUMO

Diabetic retinopathy (DR) occurs in untreated diabetic patients due to the strong influence of oxidative stress. Bioflavonoids are well known for their antioxidant property. Morin, a bioflavonoid, has been demonstrated for its antioxidant as well as antidiabetic activity. Thus, this research work intended to determine the ameliorative impact of morin in DR rats using STZ-induced type 1 diabetic model. To induce type 1 diabetic in rats STZ (60 mg/kg) was administered intraperitoneally. Grouping of animals was done as described below (n = 6), where, group I - normal control, group II - diabetic control, group III - morin (25 mg/kg), group IV - morin (50 mg/kg), and group V - metformin (350 mg/kg) were used. All the animals underwent treatment for 60 days as given above. It was observed that supplementation of morin (25 and 50 mg/kg) showed a noteworthy decline in elevated serum glucose level. Moreover, decrease in the level of LPO and improved activity of endogenous antioxidants (GPx, CAT, and SOD) was observed in morin treated groups. It also notably drops the concentration of TNF-α, IL-1ß, and VEGF in the tissue homogenate of the retina. Furthermore, it increased the retinal thickness and cell count in the ganglion cell layer of the retina in diabetic animals. Hence, we can conclude that morin encumbers the progression of DR in diabetic animals, which may be via antioxidant property and suppression of TNF-α, IL-1ß, and VEGF.

18.
J Nutr Sci ; 9: e57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354328

RESUMO

Table olives, a product of olive tree (Olea europaea L.), is an important fermented product of the Mediterranean Diet. Agronomical factors, particularly the cultivar, the ripening stage and the processing method employed are the main factors influencing the nutritional and non-nutritional composition of table olives and their organoleptic properties. The important nutritional value of this product is due to its richness in monounsaturated fat (MUFA), mainly oleic acid, fibre and vitamin E together with the presence of several phytochemicals. Among these, hydroxytyrosol (HT) is the major phenolic compound present in all types of table olives. There is a scarcity of in vitro, in vivo and human studies of table olives. This review focused comprehensively on the nutrients and bioactive compound content as well as the health benefits assigned to table olives. The possible health benefits associated with their consumption are thought to be primarily related to effects of MUFA on cardiovascular health, the antioxidant (AO) capacity of vitamin E and its role in protecting the body from oxidative damage and the anti-inflammatory and AO activities of HT. The influence of multiple factors on composition of the end product and the potential innovation in the production of table olives through the reduction of its final salt content was also discussed.


Assuntos
Frutas , Olea , Dieta Mediterrânea , Humanos , Valor Nutritivo
19.
J Ginseng Res ; 44(1): 24-32, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32095094

RESUMO

Cardiovascular diseases prevail among modern societies and underdeveloped countries, and a high mortality rate has also been reported by the World Health Organization affecting millions of people worldwide. Hyperactive platelets are the major culprits in thrombotic disorders. A group of drugs is available to deal with such platelet-related disorders; however, sometimes, side effects and complications caused by these drugs outweigh their benefits. Ginseng and its nutraceuticals have been reported to reduce the impact of thrombotic conditions and improve cardiovascular health by antiplatelet mechanisms. This review provides (1) a comprehensive insight into the available pharmacological options from ginseng and ginsenosides (saponin and nonsaponin fractions) for platelet-originated cardiovascular disorders; (2) a discussion on the impact of specific functional groups on the modulation of platelet functions and how structural modifications among ginsenosides affect platelet activation, which may further provide a basis for drug design, optimization, and the development of ginsenoside scaffolds as pharmacological antiplatelet agents; (3) an insight into the synergistic effects of ginsenosides on platelet functions; and (4) a perspective on future research and the development of ginseng and ginsenosides as super nutraceuticals.

20.
Acta Pharm Sin B ; 10(1): 33-41, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993305

RESUMO

Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways. When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected. Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcriptional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug transporters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic receptor-based therapeutic strategies for sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA