Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
World J Microbiol Biotechnol ; 37(7): 120, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132920

RESUMO

The diversity of actinobacteria associated with marine ascidian Phallusia nigra from Andaman Islands was investigated. A total of 10 actinobacteria were isolated and based on the biochemical and molecular characterization, the isolates were assigned to 7 different actinobacterial genera. Eight putatively novel species belonging to genera Rhodococcus, Kineococcus, Kocuria, Janibacter, Salinispora and Arthrobacter were identified based on 16S rDNA sequence similarity with the NCBI database. The organic extracts of ten isolates displayed considerable bioactivity against test pathogens, which were Gram-positive and Gram-negative in nature. PCR-based screening for type I and type II polyketide synthases (PKS-I, PKS-II) and nonribosomal peptide synthetases (NRPS) revealed that, 10 actinobacterial isolates encoded at least one type of polyketide synthases biosynthesis gene. Majority of the isolates found to produce industrially important enzymes; amylase, protease, gelatinase, lipase, DNase, cellulase, urease, phosphatase and L-asparaginase. The present study emphasized that, ascidians are a prolific resource for novel bioactive actinobacteria with potential for novel drug discovery. This result expands the scope to functionally characterize the novel ascidian associated marine actinobacteria and their metabolites could be a source for the novel molecules of commercial interest.


Assuntos
Actinobacteria/classificação , Actinobacteria/enzimologia , Actinobacteria/genética , Organismos Aquáticos/microbiologia , Simbiose , Urocordados/microbiologia , Actinobacteria/metabolismo , Amilases/metabolismo , Animais , Antibacterianos/metabolismo , Asparaginase/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Biodiversidade , Celulase/metabolismo , Celulose/metabolismo , DNA Bacteriano , Microbiologia Industrial , Ilhas , Lipase/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Sintases/genética , Policetídeo Sintases/genética , RNA Ribossômico 16S , Análise de Sequência de DNA
2.
BMC Microbiol ; 20(1): 143, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493249

RESUMO

BACKGROUND: Streptomycetes from the rhizospheric soils are a rich resource of novel secondary metabolites with various biological activities. However, there is still little information related to the isolation, antimicrobial activity and biosynthetic potential for polyketide and non-ribosomal peptide discovery associated with the rhizospheric streptomycetes of Panax notoginseng. Thus, the aims of the present study are to (i) identify culturable streptomycetes from the rhizospheric soil of P. notoginseng by 16S rRNA gene, (ii) evaluate the antimicrobial activities of isolates and analyze the biosynthetic gene encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) of isolates, (iii) detect the bioactive secondary metabolites from selected streptomycetes, (iv) study the influence of the selected isolate on the growth of P. notoginseng in the continuous cropping field. This study would provide a preliminary basis for the further discovery of the secondary metabolites from streptomycetes isolated from the rhizospheric soil of P. notoginseng and their further utilization for biocontrol of plants. RESULTS: A total of 42 strains representing 42 species of the genus Streptomyces were isolated from 12 rhizospheric soil samples in the cultivation field of P. notoginseng and were analyzed by 16S rRNA gene sequencing. Overall, 40 crude cell extracts out of 42 under two culture conditions showed antibacterial and antifungal activities. Also, the presence of biosynthesis genes encoding type I and II polyketide synthase (PKS I and PKS II) and nonribosomal peptide synthetases (NRPSs) in 42 strains were established. Based on characteristic chemical profiles screening by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD), the secondary metabolite profiles of strain SYP-A7257 were evaluated by High Performance Liquid Chromatography-High Resolution Mass Spectrometry (HPLC-HRMS). Finally, four compounds actinomycin X2 (F1), fungichromin (F2), thailandin B (F7) and antifungalmycin (F8) were isolated from strain SYP-A7257 by using chromatography techniques, UV, HR-ESI-MS and NMR, and their antimicrobial activities against the test bacteria and fungus were also evaluated. In the farm experiments, Streptomyces sp. SYP-A7257 showed healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field. CONCLUSIONS: We demonstrated the P. notoginseng rhizospheric soil-derived Streptomyces spp. distribution and diversity with respect to their metabolic potential for polyketides and non-ribosomal peptides, as well as the presence of biosynthesis genes PKS I, PKS II and NRPSs. Our results showed that cultivatable Streptomyces isolates from the rhizospheric soils of P. notoginseng have the ability to produce bioactive secondary metabolites. The farm experiments suggested that the rhizospheric soil Streptomyces sp. SYP-A7257 may be a potential biological control agent for healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field.


Assuntos
Panax notoginseng/microbiologia , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Streptomyces/classificação , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/genética , DNA Ribossômico/genética , Dactinomicina/análogos & derivados , Dactinomicina/isolamento & purificação , Farmacorresistência Bacteriana , Macrolídeos/isolamento & purificação , Filogenia , Polienos/isolamento & purificação , RNA Ribossômico 16S/genética , Rizosfera , Metabolismo Secundário , Microbiologia do Solo , Streptomyces/genética , Streptomyces/isolamento & purificação
3.
Microb Ecol ; 74(3): 570-584, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28361265

RESUMO

Lichens are structured associations of a fungus with a cyanobacteria and/or green algae in a symbiotic relationship, which provide specific habitats for diverse bacterial communities, including actinomycetes. However, few studies have been performed on the phylogenetic relationships and biosynthetic potential of actinomycetes across lichen species. In the present study, a total of 213 actinomycetes strains were isolated from 35 lichen samples (22 lichen genera) collected in Yunnan Province, China. 16S rRNA gene sequence analysis revealed an unexpected level of diversity among these isolates, which were distributed into 38 genera, 19 families, and 9 orders within the Actinobacteria phylum. The detailed taxa of isolates had no clear relationship to the taxonomic affiliations of the associated lichens. To the best of our knowledge, this is the first report to describe the isolation of Actinophytocola, Angustibacter, Herbiconiux, Kibdelosporangium, Kineosporia, Kitasatospora, Nakamurella, Nonomuraea, Labedella, Lechevalieria, Lentzea, Schumannella, and Umezawaea species from lichens. At least 40 isolates (18.78%) are likely to represent novel actinomycetes taxa within 15 genera. In addition, all 213 isolates were tested for antimicrobial activity and screened for genes associated with secondary metabolite production to evaluate their biosynthetic potential. These results demonstrate that the lichens of Yunnan Province represent an extremely rich reservoir for the isolation of a significant diversity of actinomycetes, including novel species, which are potential source for discovering biologically active compounds.


Assuntos
Actinobacteria/química , Actinobacteria/fisiologia , Antibiose , Biodiversidade , Líquens/fisiologia , Simbiose , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Anti-Infecciosos/metabolismo
4.
Appl Microbiol Biotechnol ; 100(12): 5323-38, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26810200

RESUMO

A phylogeny-guided approach was applied to screen endophytic fungi containing type I polyketide synthase (PKS I) biosynthetic gene sequences and aimed to correlate genotype to chemotype for the discovery of novel bioactive polyketides. Salicorn 58, which was identified as Talaromyces funiculosus based on its internal transcribed spacer (ITS) and ribosomal large-subunit (LSU) DNA sequences, showed significant target bands. A chemical investigation of the culture of Salicorn 58 was allowed for the isolation of a new polyketide, Talafun (1), and a new natural product, N-(2'-hydroxy-3'-octadecenoyl)-9-methyl-4,8-sphingadienin (2), together with six known compounds, including chrodrimanin A (3), chrodrimanin B (4), N-(4-hydroxy-2-methoxyphenyl) acetamide (5), butyl ß-glucose (6), 3ß,15ß-dihydroxyl-(22E, 24R)-ergosta-5,8(14),22-trien-7-dione (7), and (3ß,5a,8a,22E)-5,8-epidioxyergosta-6,22-dien-3-ol (8). Their chemical structures were elucidated by extensive spectroscopic analysis and electro circular dichroism (ECD) spectrum calculations. Antioxidant experiments revealed that compound 5 showed strong ABTS(+) radical scavenging activity with an IC50 value of 11.43 ± 1.61 µM and potent ferric reducing activity (FRAP assay) with FRAP value of 187.52 ± 2.97. Antimicrobial assays revealed that compounds 1 and 4 showed high levels of selectivity toward Escherichia coli with MIC values of 18 ± 0.40 and 43 ± 0.52 µM, respectively. Compounds 2 and 3 exhibited broad-spectrum antimicrobial activity against Staphylococcus aureus, Mycobacterium smegmatis, Micrococcus tetragenus, Mycobacterium phlei, and E. coli, respectively. The results from the current research highlight the advantage of phylogeny-guided pipeline for the screening of new polyketides from endophytic fungi containing PKS I genes.


Assuntos
Antibacterianos/isolamento & purificação , Endófitos/genética , Policetídeo Sintases/genética , Policetídeo Sintases/isolamento & purificação , Policetídeos/isolamento & purificação , Talaromyces/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Descoberta de Drogas/métodos , Endófitos/enzimologia , Escherichia coli/efeitos dos fármacos , Genótipo , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Filogenia , Policetídeos/química , Policetídeos/farmacologia , Análise Espectral , Staphylococcus aureus/efeitos dos fármacos , Talaromyces/enzimologia , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento
5.
Pol J Microbiol ; 65(3): 319-329, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-29334064

RESUMO

The prospective of endophytic microorganisms allied with medicinal plants is disproportionally large compared to those in other biomes. The use of antagonistic microorganisms to control devastating fungal pathogens is an attractive and eco-friendly substitute for chemical pesticides. Many species of actinomycetes, especially the genus Streptomyces, are well known as biocontrol agents. We investigated the culturable community composition and biological control ability of endophytic Streptomyces sp. associated with an ethanobotanical plant Schima wallichi. A total of 22 actinobacterial strains were isolated from different organs of selected medicinal plants and screened for their biocontrol ability against seven fungal phytopathogens. Seven isolates showed significant inhibition activity against most of the selected pathogens. Their identification based on 16S rRNA gene sequence analysis, strongly indicated that all strains belonged to the genus Streptomyces. An endophytic strain BPSAC70 isolated from root tissues showed highest percentage of inhibition (98.3 %) against Fusarium culmorum with significant activity against other tested fungal pathogens. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all seven strains shared 100 % similarity with the genus Streptomyces. In addition, the isolates were subjected to the amplification of antimicrobial genes encoding polyketide synthase type I (PKS-I) and nonribosomal peptide synthetase (NRPS) and found to be present in most of the potent strains. Our results identified some potential endophytic Streptomyces species having antagonistic activity against multiple fungal phytopathogens that could be used as an effective biocontrol agent against pathogenic fungi.


Assuntos
Antibiose , Endófitos/isolamento & purificação , Doenças das Plantas/prevenção & controle , Streptomyces/isolamento & purificação , Theaceae/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/fisiologia , Fusarium/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Streptomyces/classificação , Streptomyces/genética , Streptomyces/fisiologia
6.
Microbiol Res ; 229: 126312, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31434034

RESUMO

Due to emergence of drug resistant pathogens, nearly all available medicines are becoming ineffective against these life threatening pathogens so there is dire need for the discovery of compounds having unique modes of action. During our previous studies, actinomycetes designated as 196 and RI.24 were isolated, screened for bioactive compounds production and characterized using 16S rRNA gene sequencing. Colony 196 was identified as strain of Streptomyces albolongus (100% sequence similarity) and RI.24 as strain of Streptomyces enissocaesilis (100% sequence similarity). In current study, potential bioactive compounds produced by these strains were characterized. Cold extraction method was applied for taking out of bioactive compounds from actinomycetes. Minimum inhibitory concentration (MIC) determination of compounds from these strains showed activity nearly in the range of commercial antibiotics (strain 196 0.0075 mg/ml, RI.24 0.25 mg/ml and chloramphenicol 0.0075 mg/ml, ampicillin 0.025 mg/ml). Structural elucidation of these compounds was carried out using spectroscopic techniques of LC-MS/MS and 1H NMR. Compounds K-252-C-Aglycone, indolocarbazole alkaloid, decoyinine, cycloheximide were detected from strain 196 whereas daunorubicin, hygromycin B, agecorynin F, indinavir-N-glucuronide and minocycline were identified from strain RI.24.Current study reports these compounds for the first time from strains of Streptomyces albolongus and Streptomyces enissocaesilis. Present investigation also suggests that strains 196 and RI.24 contain polyketide synthase-I (PKS-I) and non-ribosomal peptide synthetase (NRPS) gene clusters which are responsible for the production of bioactive compounds. The results of this study can be used by the scientific world or pharmaceutical industries for the development of new drugs/formulations by applying more advanced techniques.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Microbiologia do Solo , Streptomyces/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estrutura Molecular , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
7.
Front Microbiol ; 9: 295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535686

RESUMO

Polyketides (PKs) and nonribosomal peptides (NRPs) are widely applied as drugs in use today, and one potential source for novel PKs and NRPs is the marine sediment microbes. However, the diversities of microbes and their PKs and NRPs biosynthetic genes in the marine sediment are rarely reported. In this study, 16S rRNA gene fragments of the Yellow Sea sediment were analyzed, demonstrating that Proteobacteria and Bacteroidetes accounted for 62% of all the bacterial species and Actinobacteria bacteria which were seen as the typical PKs and NRPs producers only accounted for 0.82% of all the bacterial species. At the same time, PKs and NRPs diversities were evaluated based on the diversity of gene fragments of type I polyketide synthase (PKS) ketosynthase domain (KS), nonribosomal peptide synthetase (NRPS) adenylation domain (AD), and dTDP-glucose-4,6-dehydratase (dTGD). The results showed that AD genes and dTGD genes were abundant and some of them had less than 50% identities with known ones; By contrast, only few KS genes were identified and most of them had more than 60% identities with known KS genes. Moreover, one 70,000-fosmid clone library was further constructed to screen for fosmid clones harboring PKS or NRPS gene clusters of the Yellow Sea sediment. Nine selected fosmid clones harboring KS or AD were sequenced, and three of the clones were assigned to Proteobacteria. Though only few Actinobacteria 16S rRNA gene sequences were detected in the microbial community, five of the screened fosmid clones were assigned to Actinobacteria. Further assembly of the 9 fosmid clones resulted in 11 contigs harboring PKS, NRPS or hybrid NPRS-PKS gene clusters. These gene clusters showed less than 60% identities with the known ones and might synthesize novel natural products. Taken together, we revealed the diversity of microbes in the Yellow Sea sediments and found that most of the microbes were uncultured. Besides, evaluation of PKS and NRPS biosynthetic gene clusters suggested that the marine sediment might have the ability to synthesize novel natural products and more NRPS gene clusters than PKS gene clusters distributed in this environment.

8.
Microbiol Res ; 211: 1-12, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29705201

RESUMO

Fungal communities associated to three epiphytic lichens active against Candida, were investigated using culture-based methods We hypothetized that associated fungi would contribute to lichens activities. The ability of specific fungi to grow inside or outside lichens was investigated. To detect biogenesis pathways involved in the production of secondary metabolites, genes coding for nonribosomal peptide synthetase (NRPS) and polyketide synthase I (PKS I) were screened by PCR from fungal DNA extracts. Both endo and epilichenic communities were isolated from two fructicose (Evernia prunastri and Ramalina fastigiata) and one foliose (Pleurosticta acetabulum) lichens. A total of 86 endolichenic and 114 epilichenic isolates were obtained, corresponding to 18 and 24 phylogenetic groups respectively suggesting a wide diversity of fungi. The communities and the species richness were distinct between the three lichens which hosted potentially new fungal species. Additionally, the endo- and epilichenic communities differed in their composition: Sordariomycetes were particularly abundant among endolichenic fungi and Dothideomycetes among epilichenic fungi. Only a few fungi colonized both habitats, such as S. fimicola, Cladosporium sp1 and Botrytis cinerea. Interestingly, Nemania serpens (with several genotypes) was the most abundant endolichenic fungus (53% of isolates) and was shared by the three lichens. Finally, 12 out of 36 phylogenetic groups revealed the presence of genes coding for nonribosomal peptide synthetase (NRPs) and polyketide synthase I (PKS I). This study shows that common lichens are reservoirs of diverse fungal communities, which could potentially contribute to global activity of the lichen and, therefore, deserve to be isolated for further chemical studies.


Assuntos
Biofilmes/efeitos dos fármacos , Candida/fisiologia , Líquens/microbiologia , Parmeliaceae/classificação , Parmeliaceae/enzimologia , Parmeliaceae/isolamento & purificação , Ascomicetos/classificação , Ascomicetos/enzimologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , França , Parmeliaceae/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Metabolismo Secundário/genética , Simbiose
9.
Front Microbiol ; 6: 389, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999928

RESUMO

Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds.

10.
Front Microbiol ; 6: 273, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904906

RESUMO

Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n = 22, 52.3%) of actinomycetes was isolated from roots, followed by stems (n = 9, 21.4%), leaves (n = 6, 14.2%), flowers (n = 3, 7.1%), and petioles (n = 2, 4.7%). The genus Streptomyces was the most dominant among the isolates (66.6%) in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India). From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium, and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp., and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA