Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 168(2): 367-373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639853

RESUMO

PURPOSE: Central nervous system (CNS) embryonal tumors are a diverse group of malignant tumors typically affecting pediatric patients that recently have been better defined, and this paper describes evolution of a unique type of embryonal tumor at relapse. METHODS: Two pediatric patients with CNS embryonal tumors with EWSR1-PLAGL1 rearrangements treated at Arkansas Children's Hospital with histopathologic and molecular data are described. RESULTS: These two patients at diagnosis were classified as CNS embryonal tumors with EWSR1-PLAGL1 rearrangements based on histologic appearance and molecular data. At relapse both patient's disease was reclassified as atypical teratoid rhabdoid tumor (ATRT) based on loss of INI-1, presence of SMARCB1 alterations, and methylation profiling results. CONCLUSION: CNS embryonal tumors with EWSR1-PLAGL1 rearrangements acquire or include a population of cells with SMARCB1 alterations that are the component that predominate at relapse, suggesting treatment aimed at this disease component at diagnosis should be considered.


Assuntos
Neoplasias do Sistema Nervoso Central , Recidiva Local de Neoplasia , Neoplasias Embrionárias de Células Germinativas , Proteína EWS de Ligação a RNA , Proteína SMARCB1 , Feminino , Humanos , Masculino , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Rearranjo Gênico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína EWS de Ligação a RNA/genética , Proteína SMARCB1/genética , Lactente
2.
Biochem Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564096

RESUMO

The study aims to explore the epigenetic mechanisms of neurodevelopmental impairment accompanied in chorioamniotic preterm infants. Our study included 16 full-term infants and 69 preterm infants. The methylation status of the pleomorphic adenoma gene-like 1 (PLAGL1) gene in the cord blood was determined by pyrosequencing. Brain B-ultrasonography and magnetic resonance imaging (MRI) were performed to diagnose brain injury. The activity of candidate fragments of PLAGL1 and the effect of methylation on PLAGL1 activity were evaluated by double luciferase reporter assay. The data showed that there were no differences in the methylation levels of each Cytosine-phosphate-Guanine (CpG) site of PLAGL1 between full-term and preterm infants. Within preterm infants, the methylation levels of the CpG2, CpG3, CpG4, and CpG5 sites were increased in the chorioamnionitis group compared with the no chorioamnionitis group. The areas under curves (AUCs) of the receiver operating characteristic (ROC) curves of CpG2, CpG3, CpG4, and CpG5 were 0.656, 0.653, 0.670, and 0.712, respectively. Meanwhile, the methylation level of the CpG2 site was increased in preterm babies with brain injury compared with those without brain injury, and the AUC of CpG2 was 0.648, with a sensitivity of 75.9% and a specificity of 50.0%. A double luciferase reporter assay revealed that PLAGL1 fragments had enhancer-like activity and that the methylated form of PLAGL1 weakened this activity. Thus, PLAGL1 hypermethylation in chorioamniotic preterm infants is positively correlated with brain injury. Our results suggest a potential use for PLAGL1 methylation as a biomarker in the diagnosis of brain injury.

3.
Acta Neuropathol ; 145(1): 49-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36437415

RESUMO

Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/ß-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumores Neuroectodérmicos Primitivos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteínas de Ciclo Celular/genética , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Tumores Neuroectodérmicos Primitivos/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt/genética
4.
BMC Gastroenterol ; 23(1): 2, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600208

RESUMO

BACKGROUND: Emerging evidence has shown the crucial roles of pleomorphic adenoma gene (PLAG) family genes in multiple cancers. However, their functions and mechanisms in pancreatic adenocarcinoma (PAAD) remain poorly understood. METHODS: We analyzed the expression levels of PLAG family genes in both The Cancer Genome Atlas (TCGA) database and a Gene Expression Omnibus (GEO) database, and confirmed the results in our three independent cohorts of 382 PAAD tissues and 362 adjacent nontumor pancreatic tissues. Integrated analyses were carried out to explore the function, mechanism and prognostic value of the selected PLAG family gene in PAAD patients. RESULTS: By analyzing the TCGA and GEO databases, PLAGL1 was identified to be downregulated in PAAD tissues, and its decreasing levels of both mRNA and protein were verified in our three independent PAAD cohorts. PLAGL1 expression was inversely correlated with clinicopathological factors including the Ki67+ cell rate and pathologic stage. Further GSEA of the TCGA-PAAD cohort demonstrated that multiple signaling pathways implicated in cell proliferation were enriched in the lower PLAGL1 expressing PAAD group. Moreover, we demonstrated that PLAGL1 expression was obviously negatively associated with patients' overall survival outcome in both the TCGA-PAAD cohort and our verification cohorts. Additionally, through MTS and BrdU assays, we further demonstrated in vitro that PLAGL1 had the impact of preventing the proliferation of pancreatic cancer cells. CONCLUSIONS: Our present study suggested that downregulated PLAGL1 might act as a biomarker in predicts poor prognosis and one of important factors in increasing cell proliferation in PAAD. This study provides us with a novel prognostic marker and therapeutic strategy for PAAD, which deserves further study.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Fatores de Transcrição , Proteínas Supressoras de Tumor , Humanos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Neoplasias Pancreáticas
5.
Acta Neuropathol ; 142(5): 827-839, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34355256

RESUMO

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


Assuntos
Proteínas de Ciclo Celular/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Criança , Feminino , Humanos , Masculino , Fusão Oncogênica
6.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171905

RESUMO

During pregnancy, the placenta is important for transporting nutrients and waste between the maternal and fetal blood supply, secreting hormones, and serving as a protective barrier. To better understand placental development, we must understand how placental gene expression is regulated. We used RNA-seq data and ChIP-seq data for the enhancer associated mark, H3k27ac, to study gene regulation in the mouse placenta at embryonic day (e) 9.5, when the placenta is developing a complex network of blood vessels. We identified several upregulated transcription factors with enriched binding sites in e9.5-specific enhancers. The most enriched transcription factor, PLAGL1 had a predicted motif in 233 regions that were significantly associated with vasculature development and response to insulin stimulus genes. We then performed several experiments using mouse placenta and a human trophoblast cell line to understand the role of PLAGL1 in placental development. In the mouse placenta, Plagl1 is expressed in endothelial cells of the labyrinth layer and is differentially expressed in placentas from mice with gestational diabetes compared to placentas from control mice in a sex-specific manner. In human trophoblast cells, siRNA knockdown significantly decreased expression of genes associated with placental vasculature development terms. In a tube assay, decreased PLAGL1 expression led to reduced cord formation. These results suggest that Plagl1 regulates overlapping gene networks in placental trophoblast and endothelial cells, and may play a critical role in placental development in normal and complicated pregnancies.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Placenta/irrigação sanguínea , Placenta/metabolismo , Placentação/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Gravidez , Fatores de Transcrição/metabolismo , Trofoblastos/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Birth Defects Res A Clin Mol Teratol ; 106(8): 724-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27223093

RESUMO

BACKGROUND: The bladder exstrophy-epispadias complex (BEEC) is characterized by a spectrum of genitourinary malformations. Both classical bladder exstrophy and the most severe phenotype, exstrophy of the cloaca, display omphaloceles, a cardinal anomaly of some disorders caused by altered imprinting. Therefore, we hypothesized that BEEC in some patients could occur on the basis of an undiagnosed imprinting disorder. Such altered imprinting is associated with changes in the parent-of-origin-specific DNA methylation. METHODS: We analyzed the DNA methylation of 54 imprinted loci in 23 selected patients with different BEEC subtypes (epispadias n = 1, classical bladder exstrophy n = 10, exstrophy of the cloaca n = 12) using the Infinium HumanMethylation450 BeadChip. A total of 471,722 not imprinted autosomal CpG loci and 891 imprinted CpG loci were investigated. Findings were corroborated by methylation-specific-multiplex ligation-dependent probe amplification (MS-MLPA) and microsatellite analysis. RESULTS: No significant differences in the DNA methylation of the not imprinted and imprinted CpG were observed depending on subtype of BEEC. Nevertheless, in 1 of the 23 patients who displayed a classical bladder exstrophy, we detected hypomethylation of the imprinted PLAGL1 locus in chromosome 6q24. We verified this hypomethylation by MS-MLPA and showed further the methylation loss to be caused most likely by a mosaic epimutation. CONCLUSION: Considering that it is highly unlikely to detect a PLAGL1 epimutation among 23 individuals given the low incidence of this alteration in the population, our observations further support a link between BEEC and imprinting disorders. Birth Defects Research (Part A) 106:724-728, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Extrofia Vesical/genética , Proteínas de Ciclo Celular/genética , Cromossomos Humanos Par 6/química , Metilação de DNA , Epispadia/genética , Impressão Genômica , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Extrofia Vesical/diagnóstico , Extrofia Vesical/patologia , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Epispadia/diagnóstico , Epispadia/patologia , Feminino , Expressão Gênica , Loci Gênicos , Humanos , Masculino , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex
8.
Acta Neuropathol Commun ; 12(1): 55, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581034

RESUMO

A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Ependimoma , Glioma Subependimal , Neoplasias Supratentoriais , Criança , Humanos , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular , Neoplasias do Sistema Nervoso Central/genética , Ependimoma/patologia , Hibridização in Situ Fluorescente , Neoplasias Supratentoriais/patologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
9.
Poult Sci ; 103(10): 104038, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39079330

RESUMO

Fatty acids (FAs) can serve as energy for poultry, maintain normal cell structure and function, and support a healthy immune system. Although the addition of polyunsaturated fatty acids (PUFAs) to the diet has been extensively studied and reported, the mechanism of action of saturated fatty acids (SFAs) remains to be elucidated. We investigated the effect of 0.04% dietary myristic acid (MA) on slaughter performance, lipid components, tissue FAs, and the transcriptome profile in chickens. The results showed that dietary MA had no effect on slaughter performance (body weight, carcass weight, eviscerated weight, and pectoral muscle weight) (P > 0.05). Dietary MA enrichment increased MA (P < 0.001) and triglycerides (TGs) (P < 0.01) levels in the pectoral muscle. The levels of palmitic acid, linoleic acid (LA), arachidonic acid (AA), SFAs, monounsaturated fatty acids (MUFAs), and PUFAs were significantly higher (P < 0.01) in the MA supplementation group compared to the control group. However, there were no significant differences in the ratios of PUFA/SFA and n6/omega-3 (n3) between the two groups. The MA content was positively correlated with the contents of palmitic acid, LA, linolenic acid (ALA), n3, n6, SFAs, and unsaturated fatty acids (UFA). DHCR24, which is known to be involved in steroid metabolism and cholesterol biosynthesis pathways, was found to be a significantly lower in the MA supplementation group compared to the control group (P < 0.05, log2(fold change) = -0.85). Five overlapping co-expressed genes were identified at the intersection between the differential expressed genes and Weighted Gene Co­expression Network Analysis-derived hub genes associated with MA phenotype, namely BHLHE40, MSL1, PLAGL1, SRSF4, and ENSGALG00000026875. For the TG phenotype, a total of 28 genes were identified, including CHKA, KLF5, TGIF1, etc. Both sets included the gene PLAGL1, which has a negative correlation with the levels of MA and TG. This study provides valuable information to further understand the regulation of gene expression patterns by dietary supplementation with MA and examines at the molecular level the phenotypic changes induced by supplementation with MA.

10.
Acta Neuropathol Commun ; 12(1): 143, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228008

RESUMO

Neuroepithelial tumors with fusion of PLAGL1 or amplification of PLAGL1/PLAGL2 have recently been described often with ependymoma-like or embryonal histology respectively. To further evaluate emerging entities with PLAG-family genetic alterations, the histologic, molecular, clinical, and imaging features are described for 8 clinical cases encountered at St. Jude (EWSR1-PLAGL1 fusion n = 6; PLAGL1 amplification n = 1; PLAGL2 amplification n = 1). A histologic feature observed on initial resection in a subset (4/6) of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement was the presence of concurrent ependymal and ganglionic differentiation. This ranged from prominent clusters of ganglion cells within ependymoma/subependymoma-like areas, to interspersed ganglion cells of low to moderate frequency among otherwise ependymal-like histology, or focal areas with a ganglion cell component. When present, the combination of ependymal-like and ganglionic features within a supratentorial neuroepithelial tumor may raise consideration for an EWSR1-PLAGL1 fusion, and prompt initiation of appropriate molecular testing such as RNA sequencing and methylation profiling. One of the EWSR1-PLAGL1 fusion cases showed subclonal INI1 loss in a region containing small clusters of rhabdoid/embryonal cells, and developed a prominent ganglion cell component on recurrence. As such, EWSR1-PLAGL1 neuroepithelial tumors are a tumor type in which acquired inactivation of SMARCB1 and development of AT/RT features may occur and lead to clinical progression. In contrast, the PLAGL2 and PLAGL1 amplified cases showed either embryonal histology or contained an embryonal component with a significant degree of desmin staining, which could also serve to raise consideration for a PLAG entity when present. Continued compilation of associated clinical data and histopathologic findings will be critical for understanding emerging entities with PLAG-family genetic alterations.


Assuntos
Proteína EWS de Ligação a RNA , Neoplasias Supratentoriais , Fatores de Transcrição , Humanos , Neoplasias Supratentoriais/genética , Neoplasias Supratentoriais/patologia , Feminino , Proteína EWS de Ligação a RNA/genética , Masculino , Fatores de Transcrição/genética , Criança , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Pré-Escolar , Adolescente , Adulto , Proteínas de Ligação a DNA/genética , Adulto Jovem , Diferenciação Celular , Proteínas de Fusão Oncogênica/genética , Epêndima/patologia , Rearranjo Gênico/genética , Proteínas Cromossômicas não Histona/genética
11.
J Gynecol Obstet Hum Reprod ; 52(4): 102568, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36868502

RESUMO

Since the PLAGL1 (ZAC1) gene is expressed in the human endometrium. It may be involved in the etiology of endometrial disorders by its abnormal regulation and expression. This study aimed to investigate the Zac1 gene and related microRNA and LncRNA and its alterations in patients with endometriosis. Blood plasma, ectopic (EC) and eutopic (EU) endometrial samples were gathered from 30 patients with endometriosis and 30 healthy fertile women, and the Q-PCR technique was used to determine the expression level of Zac1 mRNA and microRNAs (miR-1271-5p, hsa-miR-490-3pin) and LncRNAs (TONSL-AS1 TONSL, KCNQ1OT1 KCNQ1). According to the results, the Zac1 gene and KCNQ1OT1 KCNQ1, TONSL-AS1 TONSL LncRNA expression were significantly decreased in the endometriosis group versus the control group (P < 0.05). MiR-1271-5p and hsa-miR-490-3pin microRNA expression were significantly raised in the endometriosis group as opposed to the control group (P < 0.05). In summary, this research for the first time revealed that identifying Zac1 expression provides us with new indicators for evaluating endometriosis.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Endometriose/genética , Endometriose/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Canal de Potássio KCNQ1 , MicroRNAs/genética , Biomarcadores , Fatores de Transcrição , Proteínas de Ciclo Celular , Proteínas Supressoras de Tumor/metabolismo , NF-kappa B/metabolismo
12.
Open Biol ; 13(2): 220305, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36751888

RESUMO

RING1 and YY1 binding protein (RYBP) is primarily known to function as a repressor being a core component of the non-canonical polycomb repressive complexes 1 (ncPRC1s). However, several ncPRC1-independent functions of RYBP have also been described. We previously reported that RYBP is essential for mouse embryonic development and that Rybp null mutant embryonic stem cells cannot form contractile cardiomyocytes (CMCs) in vitro. We also showed that PLAGL1, a cardiac transcription factor, which is often mutated in congenital heart diseases (CHDs), is not expressed in Rybp-null mutant CMCs. However, the underlying mechanism of how RYBP regulates Plagl1 expression was not revealed. Here, we demonstrate that RYBP cooperated with NKX2-5 to transcriptionally activate the P1 and P3 promoters of the Plagl1 gene and that this activation is ncPRC1-independent. We also show that two non-coding RNAs residing in the Plagl1 locus can also regulate the Plagl1 promoters. Finally, PLAGL1 was able to activate Tnnt2, a gene important for contractility of CMCs in transfected HEK293 cells. Our study shows that the activation of Plagl1 by RYBP is important for sarcomere development and contractility, and suggests that RYBP, via its regulatory functions, may contribute to the development of CHDs.


Assuntos
Proteínas de Transporte , Células-Tronco Embrionárias Murinas , Animais , Feminino , Humanos , Camundongos , Gravidez , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Desenvolvimento Embrionário , Células HEK293 , Miócitos Cardíacos , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
Front Oncol ; 13: 1295613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045004

RESUMO

How the function of the JMJD2D epigenetic regulator is regulated or whether it plays a role in prostate cancer has remained elusive. We found that JMJD2D was overexpressed in prostate tumors, stimulated prostate cancer cell growth and became methylated by SET7/9 on K427. Mutation of this lysine residue in JMJD2D reduced the ability of DU145 prostate cancer cells to grow, invade and form tumors and elicited extensive transcriptomic changes. This included downregulation of CBLC, a ubiquitin ligase gene with hitherto unknown functions in prostate cancer, and upregulation of PLAGL1, a transcription factor with reported tumor suppressive characteristics in the prostate. Bioinformatic analyses indicated that CBLC expression was elevated in prostate tumors. Further, downregulation of CBLC largely phenocopied the effects of the K427 mutation on DU145 cells. In sum, these data have unveiled a novel mode of regulation of JMJD2D through lysine methylation, illustrated how this can affect oncogenic properties by influencing expression of the CBLC gene, and established a pro-tumorigenic role for CBLC in the prostate. A corollary is that JMJD2D and CBLC inhibitors could have therapeutic benefits in the treatment of prostate and possibly other cancers.

14.
Asian Pac J Cancer Prev ; 23(6): 2119-2125, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35763656

RESUMO

OBJECTIVE: The aim of this study was to investigate the expression and the promoter methylation level of PLAGL1 gene and the mechanism of epigallocatechin gallate (EGCG) that induces PLAGL1 gene demethylation and promotes the apoptosis of pheochromocytoma (PCC) in PC12 cell line. METHODS: The PC12 cells were treated with 25, 50, 75, 100, and 150 µg/mL EGCG for 48 hours. MSP was used to examine PLAGL1 gene methylation and an MTT assay was performed to detect the cell proliferation. The cell apoptosis was detected using flow cytometry. The mRNA and protein expressions of DNMT1, PLAGL1, Wnt, and ß-catenin were detected using RT-quantitative PCR and Western blot. RESULTS: EGCG dose-dependently reduced the cell viability and reversed PLAGL1 gene hypermethylation in PC12 cells (P<0.05). The cell apoptosis was significantly increased in PC12 cells treated with EGCG. The EGCG treatment restored the expressions of PLAGL1 and downregulated the expression of DNMT1, Wnt, and ß-catenin in PC12 cells (P<0.05). CONCLUSION: The EGCG induces the demethylation process of PLAGL1 gene through down-regulating DNMT1 and restores the PLAGL1 mRNA and protein expression. The Wnt/ß-catenin signaling pathway is involved in the regulation of PCC cell apoptosis promoted by EGCG inducing PLAGL1 gene demethylation.


Assuntos
Neoplasias das Glândulas Suprarrenais , Proteínas de Ciclo Celular/metabolismo , Feocromocitoma , Fatores de Transcrição/metabolismo , Animais , Apoptose , Catequina/análogos & derivados , Desmetilação , Genes Supressores de Tumor , Humanos , Células PC12 , Feocromocitoma/tratamento farmacológico , Feocromocitoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
15.
Biomedicines ; 10(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36289842

RESUMO

Treatment of full-thickness articular cartilage defects with exposure of subchondral bone often seen in osteoarthritic conditions has long been a great challenge, especially with a focus on the feasibility of in situ cartilage regeneration through minimally invasive procedures. Osteoblasts that situate in the subchondral bone plate may be considered a potentially vital endogenous source of cells for cartilage resurfacing through direct reprogramming into chondrocytes. Microarray-based gene expression profiles were generated to compare tissue-specific transcripts between subchondral bone and cartilage of mice and to assess age-dependent differences of chondrocytes as well. On osteoblast cell lines established from mouse proximal tibial subchondral bone, sequential screening by co-transduction of transcription factor (TF) genes that distinguish chondrocytes from osteoblasts reveals a shortlist of potential reprogramming factors exhibiting combined effects in inducing chondrogenesis of subchondral bone osteoblasts. A further combinatorial approach unexpectedly identified two 3-TF combinations containing Sox9 and Sox5 that exhibit differences in reprogramming propensity with the third TF c-Myc or Plagl1, which appeared to direct the converted chondrocytes toward either a superficial or a deeper zone phenotype. Thus, our approach demonstrates the possibility of converting osteoblasts into two major chondrocyte subpopulations with two combinations of three genes (Sox9, Sox5, and c-Myc or Plagl1). The findings may have important implications for developing novel in situ regeneration strategies for the reconstruction of full-thickness cartilage defects.

16.
Front Oncol ; 12: 938385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912228

RESUMO

EWSR1-rearranged tumors encompass a rare and heterogeneous group of entities with features of the central nervous system (CNS) mesenchymal and primary glial/neuronal tumors. EWSR1-PLAGL1 gene fusion is a particularly rare form of rearrangement. We presented a recurrent intracranial EWSR1-PLAGL1 rearranged tumor and reviewed the relevant literature. In this case, histopathology and immunohistochemistry (IHC) were evaluated for both the primary and relapsed tumors. Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were performed for the relapsed tumor. We compared the morphology, IHC results and molecular features with the previously reported EWSR1-PLAGL1 rearranged CNS tumors. Our case exhibited a unique feature with a variable biphasic pattern of epithelioid differentiation, which differed from the two reported groups. The primary and relapsed tumors both expressed cytokeratin of the focal area with epithelioid differentiation. The recurrent tumor showed an increased proliferation index (average Ki-67 index of 15%) compared with the primary tumor (average Ki-67 index of 5%). NGS showed that TERT promoter mutation was the only molecular change besides EWSR1-PLAGL1 fusion. Our study provides further insight into intracranial tumors with EWSR1-PLAGL1 fusion, representing a distinct CNS tumor with no-reported histological and immunohistochemical features. Future studies, particularly for the biphasic differentiation and the role of TERT promoter mutation were needed to clarify this unusual chromosomal rearrangement in the CNS tumor.

17.
Cell Rep ; 35(1): 108964, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826897

RESUMO

Chromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells. Using the tooth root as a model, we show that loss of Arid1a impairs the differentiation-associated cell cycle arrest of tooth root progenitors through Hedgehog (Hh) signaling regulation, leading to shortened roots. Our data suggest that Plagl1, as a co-factor, endows Arid1a with its cell-type/spatial functional specificity. Furthermore, we show that loss of Arid1a leads to increased expression of Arid1b, which is also indispensable for odontoblast differentiation but is not involved in regulation of Hh signaling. This study expands our knowledge of the intricate interactions among chromatin remodelers, transcription factors, and signaling molecules during progenitor cell fate determination and lineage commitment.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Raiz Dentária/citologia , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Proteínas de Ligação a DNA/deficiência , Regulação para Baixo , Genes Supressores de Tumor , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dente Molar/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Ligação Proteica , Células-Tronco/citologia , Raiz Dentária/crescimento & desenvolvimento , Fatores de Transcrição/deficiência , Transcrição Gênica , Regulação para Cima , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
18.
Genes (Basel) ; 12(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918057

RESUMO

Implementation of genomic imprinting in mammals often results in cis-acting silencing of a gene cluster and monoallelic expression, which are important for mammalian growth and function. Compared with widely documented imprinting status in humans and mice, current understanding of genomic imprinting in pigs is relatively limited. The objectives of this study were to identify DNA methylation status and allelic expression of alternative spliced isoforms at the porcine PLAGL1 locus and assess the conservation of the locus compared to the orthologous human locus. DNA methylome and transcriptome were constructed using porcine parthenogenetic or biparental control embryos. Using methylome, differentially methylated regions between those embryos were identified. Alternative splicing was identified by differential splicing analysis, and monoallelic expression was examined using single nucleotide polymorphism sites. Moreover, topological boundary regions were identified by analyzing CTCF binding sites and compared with the boundary of human orthologous locus. As a result, it was revealed that the monoallelic expression of the PLAGL1 gene in porcine embryos via genomic imprinting was maintained in the adult stage. The porcine PLAGL1 locus was largely conserved in regard to maternal hypermethylation, tissue distribution of mRNA expression, monoallelic expression, and biallelic CTCF-binding, with exceptions on transcript isoforms produced by alternative splicing instead of alternative promoter usage. These findings laid the groundwork for comparative studies on the imprinted PLAGL1 gene and related regulatory mechanisms across species.


Assuntos
Proteínas de Ciclo Celular/genética , Metilação de DNA , Epigenoma , Impressão Genômica , Fatores de Transcrição/genética , Transcriptoma , Proteínas Supressoras de Tumor/genética , Alelos , Animais , Sequência de Bases , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Partenogênese , Suínos , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
19.
Brain Pathol ; 31(1): 70-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997853

RESUMO

The group of CNS mesenchymal (non-meningothelial) and primary glial/neuronal tumors in association with EWSR1-non-ETS rearrangements comprises a growing spectrum of entities, mostly reported in isolation with incomplete molecular profiling. Archival files from three pediatric institutions were queried for unusual cases of pediatric (≤21 years) CNS EWSR1-rearranged tumors confirmed by at least one molecular technique. Extra-axial tumors and cases with a diagnosis of Ewing sarcoma (EWSR1-ETS family fusions) were excluded. Additional studies, including anchored multiplex-PCR with next-generation sequencing and DNA methylation profiling, were performed as needed to determine fusion partner status and brain tumor methylation class, respectively. Five cases (median 17 years) were identified (M:F of 3:2). Location was parenchymal (n = 3) and undetermined (n = 2) with topographic distributions including posterior fossa (n = 1), frontal (n = 1), temporal (n = 1), parietal (n = 1) and occipital (n = 1) lobes. Final designation with fusion findings included desmoplastic small round cell tumor (EWSR1-WT1; n = 1) and tumors of uncertain histogenesis (EWSR1-CREM, n = 1; EWSR1-CREB1, n = 1; EWSR1-PLAGL1, n = 1; and EWSR1-PATZ1, n = 1). Tumors showed a wide spectrum of morphology and biologic behavior. For EWSR1-CREM, EWSR1-PLAGL1 and EWSR1-PATZ1 tumors, no significant methylation scores were reached in the known brain tumor classes. Available outcome (4/5) was reported as favorable (n = 2) and unfavorable (n = 2) with a median follow-up of 30 months. In conclusion, we describe five primary EWSR1-non-ETS fused CNS tumors exhibiting morphologic and biologic heterogeneity and we highlight the clinical importance of determining specific fusion partners to improve diagnostic accuracy, treatment and monitoring. Larger prospective clinicopathological and molecular studies are needed to determine the prognostic implications of histotypes, anatomical location, fusion partners, breakpoints and methylation profiles in patients with these rare tumors.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteína EWS de Ligação a RNA/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Fusão Oncogênica , Proteínas de Fusão Oncogênica/genética , Adulto Jovem
20.
Epigenomics ; 12(20): 1769-1782, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33107765

RESUMO

Aim: The aim of this study was to determine if alterations in DNA methylation in the human placenta would support suspected preterm labor as a pathologic insult associated with diminished placental health. Methods: We evaluated placental DNA methylation at seven loci differentially methylated in placental pathologies using targeted bisulfite sequencing, in placentas associated with preterm labor (term birth after suspected preterm labor [n = 15] and preterm birth [n = 15]), and controls (n = 15). Results: DNA methylation levels at the NCAM1 and PLAGL1 loci in placentas associated with preterm labor did differ significantly (p < 0.05) from controls. Discussion: Specific alterations in methylation patterns indicative of an unfavourable placental environment are associated with preterm labor per se and not restricted to preterm birth.


Assuntos
Metilação de DNA , Trabalho de Parto Prematuro/genética , Placenta/metabolismo , Adulto , Antígeno CD56/genética , Antígeno CD56/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ilhas de CpG , Feminino , Humanos , Inflamação/genética , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA