RESUMO
The pluripotent mouse embryonic stem cell (mESCs) can transit into the totipotent-like state, and the transcription factor DUX is one of the master regulators of this transition. Intriguingly, this transition in mESCs is accompanied by massive cell death, which significantly impedes the establishment and maintenance of totipotent cells in vitro, yet the underlying mechanisms of this cell death remain largely elusive. In this study, we found that the totipotency transition in mESCs triggered cell death through the upregulation of DUX. Specifically, R-loops are accumulated upon DUX induction, which subsequently lead to DNA replication stress (RS) in mESCs. This RS further activates p53 and PMAIP1, ultimately leading to Caspase-9/7-dependent intrinsic apoptosis. Notably, inhibiting this intrinsic apoptosis not only mitigates cell death but also enhances the efficiency of the totipotency transition in mESCs. Our findings thus elucidate one of the mechanisms underlying cell apoptosis during the totipotency transition in mESCs and provide a strategy for optimizing the establishment and maintenance of totipotent cells in vitro.
Assuntos
Apoptose , Replicação do DNA , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Caspase 9/metabolismo , Caspase 9/genética , Transdução de SinaisRESUMO
Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a ß-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.
Assuntos
Dissecção Aórtica , Canabidiol , Animais , Humanos , Camundongos , Aminopropionitrilo/farmacologia , Dissecção Aórtica/tratamento farmacológico , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/patologiaRESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. NSCLC diagnosed at an early stage can be highly curable with a positive prognosis, but biomarker limitations make it difficult to diagnose lung cancer at an early stage. To identify biomarkers for lung cancer development, we previously focused on the oncogenic roles of transcription factor TFAP2C in lung cancers and revealed the molecular mechanism of several oncogenes in lung tumorigenesis based on TFAP2C-related microarray analysis. RESULTS: In this study, we analyzed microarray data to identify tumor suppressor genes and nine genes downregulated by TFAP2C were screened. Among the nine genes, we focused on growth arrest and DNA-damage-inducible beta (GADD45B) and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) as representative TFAP2C-regulated tumor suppressor genes. It was observed that overexpressed TFAP2C resulted in inhibition of GADD45B and PMAIP1 expressions at both the mRNA and protein levels in NSCLC cells. In addition, downregulation of GADD45B and PMAIP1 by TFAP2C promoted cell proliferation and cell motility, which are closely associated with NSCLC tumorigenesis. CONCLUSION: This study indicates that GADD45B and PMAIP1 could be promising tumor suppressors for NSCLC and might be useful as prognostic markers for use in NSCLC therapy.
Assuntos
Antígenos de Diferenciação/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Neoplasias Pulmonares/genética , Fator de Transcrição AP-2/genética , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Humanos , RNA Mensageiro/análise , RNA Interferente Pequeno/análiseRESUMO
BIX-01294, an euchromatic histone-lysine N-methyltransferase 2 (EHMT2) inhibitor, has been reported to induce apoptosis in human neuroblastoma cells and inhibit the proliferation of bladder cancer cells. However, the definite mechanism of the apoptosis mediated by BIX-01294 in bladder cancer cells remains unclear. In the present study, we found that BIX-01294 induced caspase-dependent apoptosis in human bladder cancer cells. Moreover, our data show BIX-01294 stimulates endoplasmic reticulum stress (ER stress) and up-regulated expression of PMAIP1 through DDIT3 up-regulation. Furthermore, down-regulation of the deubiquitinase USP9X by BIX-01294 results in downstream reduction of MCL1 expression, leading to apoptosis eventually. Thus, our findings demonstrate PMAIP1-USP9X-MCL1 axis may contribute to BIX-01294-induced apoptosis in human bladder cancer cells.
RESUMO
Avian leukosis virus Subgroup J (ALV-J) exhibits high morbidity and pathogenicity, affecting approximately 20% of poultry farms. It induces neoplastic diseases and immunosuppression. Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), a proapoptotic mitochondrial protein in the B-cell lymphoma-2 (Bcl-2) family, plays a role in apoptosis in cancer cells. However, the connection between the PMAIP1 gene and ALV-J pathogenicity remains unexplored. This study investigates the potential impact of the PMAIP1 gene on ALV-J replication and its regulatory mechanisms. Initially, we examined PMAIP1 expression using quantitative real-time PCR (qRT-PCR) in vitro and in vivo. Furthermore, we manipulated PMAIP1 expression in chicken fibroblast cells (DF-1) and assessed its effects on ALV-J infection through qRT-PCR, immunofluorescence assay (IFA), and western blotting (WB). Our findings reveal a significant down-regulation of PMAIP1 in the spleen, lung, and kidney, coupled with an up-regulation in the bursa and liver of ALV-J infected chickens compared to uninfected ones. Additionally, DF-1 cells infected with ALV-J displayed a notable up-regulation of PMAIP1 at 6, 12, 24, 48, 74, and 108 h. Over-expression of PMAIP1 enhanced ALV-J replication, interferon expression, and proinflammatory factors. Conversely, interference led to contrasting results. Furthermore, we observed that PMAIP1 promotes virus replication by modulating mitochondrial function. In conclusion, the PMAIP1 gene facilitates virus replication by regulating mitochondrial function, thereby enriching our understanding of mitochondria-related genes and their involvement in ALV-J infection, offering valuable insights for avian leukosis disease resistance strategies.
Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Galinhas , Mitocôndrias , Doenças das Aves Domésticas , Replicação Viral , Animais , Vírus da Leucose Aviária/fisiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Mitocôndrias/metabolismo , Leucose Aviária/virologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
Osteoporosis (OP) is a highly prevalent disorder characterized by low bone mass that severely reduces patient quality of life. Although numerous treatments for OP have been introduced in clinic, many have side effects and high costs. Therefore, there is still an unmet need for optimal solutions. Here, raw signal analysis was used to identify potential high-risk factors for OP, and the biological functions and possible mechanisms of action (MOAs) of these factors were explored via gene set enrichment analysis (GSEA). Subsequently, molecular biological experiments were performed to verify and analyze the discovered risk factors in vitro and in vivo. PMAIP1 was identified as a potential risk factor for OP and significantly suppressed autophagy in osteoblasts via the AMPK/mTOR pathway, thereby inhibiting the proliferation and differentiation of osteoblasts. Furthermore, we constructed an ovariectomy (OVX) model of OP in rats and simultaneously applied si-PMAIP1 for in vivo interference. si-PMAIP1 upregulated the expression of LC3B and p-AMPK and downregulated the expression of p-mTOR, and these effects were reversed by the autophagy inhibitor. Micro-CT revealed that, si-PMAIP1 significantly inhibited the development of osteoporosis in OVX model rats, and this therapeutic effect was attenuated by treatment with an autophagy inhibitor. This study explored the role and mechanism of PMAIP1 in OP and demonstrated that PMAIP1 may serve as a novel target for OP treatment.
Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Modelos Animais de Doenças , Osteoblastos , Osteoporose , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Humanos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Autofagia/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Expressão Gênica/genética , Osteoblastos/metabolismo , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/etiologia , Ovariectomia , Ratos Sprague-Dawley , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/fisiologiaRESUMO
Insulin is essential for diverse biological processes in human pluripotent stem cells (hPSCs). However, the underlying mechanism of insulin's multitasking ability remains largely unknown. Here, we show that insulin controls hPSC survival and proliferation by modulating RNA translation via distinct pathways. It activates AKT signaling to inhibit RNA translation of pro-apoptotic proteins such as NOXA/PMAIP1, thereby promoting hPSC survival. At the same time, insulin acts via the mTOR pathway to enhance another set of RNA translation for cell proliferation. Consistently, mTOR inhibition by rapamycin results in eIF4E phosphorylation and translational repression. It leads to a dormant state with sustained pluripotency but reduced cell growth. Together, our study uncovered multifaceted regulation by insulin in hPSC survival and proliferation, and highlighted RNA translation as a key step to mediate mitogenic regulation in hPSCs.
Assuntos
Insulina , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , Insulina/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
(1) Tomentosin is the most representative sesquiterpene lactone extracted by I. viscosa. Recently, it has gained particular attention in therapeutic oncologic fields due to its anti-tumor properties. (2) In this study, the potential anticancer features of tomentosin were evaluated on human Burkitt's lymphoma (BL) cell line, treated with increasing tomentosin concentration for cytotoxicity screening. (3) Our data showed that both cell cycle arrest and cell apoptosis induction are responsible of the antiproliferative effects of tomentosin and may end in the inhibition of BL cell viability. Moreover, a microarray gene expression profile was performed to assess differentially expressed genes contributing to tomentosin activity. Seventy-five genes deregulated by tomentosin have been identified. Downregulated genes are enriched in immune-system pathways, and PI3K/AKT and JAK/STAT pathways which favor proliferation and growth processes. Importantly, different deregulated genes identified in tomentosin-treated BL cells are prevalent in molecular pathways known to lead to cellular death, specifically by apoptosis. Tomentosin-treatment in BL cells induces the downregulation of antiapoptotic genes such as BCL2A1 and CDKN1A and upregulation of the proapoptotic PMAIP1 gene. (4) Overall, our results suggest that tomentosin could be taken into consideration as a potential natural product with limited toxicity and relevant anti-tumoral activity in the therapeutic options available to BL patients.
RESUMO
It is urgent to seek new potential targets for the prevention or relief of gastrointestinal syndrome in clinical radiation therapy for cancers. Vitamin D, mediated through the vitamin D receptor (VDR), has been identified as a protective nutrient against ionizing radiation (IR)-induced damage. This study investigated whether VDR could inhibit IR-induced intestinal injury and explored underlying mechanism. We first found that vitamin D induced VDR expression and inhibited IR-induced DNA damage and apoptosis in vitro. VDR was highly expressed in intestinal crypts and was critical for crypt stem/progenitor cell proliferation under physiological conditions. Next, VDR-deficient mice exposed to IR significantly increased DNA damage and crypt stem/progenitor cell apoptosis, leading to impaired intestinal regeneration as well as shorter survival time. Furthermore, VDR deficiency activated the Pmaip1-mediated apoptotic pathway of intestinal crypt stem/progenitor cells in IR-treated mice, whereas inhibition of Pmaip1 expression by siRNA transfection protected against IR-induced cell apoptosis. Therefore, VDR protects against IR-induced intestinal injury through inhibition of crypt stem/progenitor cell apoptosis via the Pmaip1-mediated pathway. Our results reveal the importance of VDR level in clinical radiation therapy, and targeting VDR may be a useful strategy for treatment of gastrointestinal syndrome.
Assuntos
Apoptose/efeitos dos fármacos , Intestinos/efeitos da radiação , Lesões Experimentais por Radiação/prevenção & controle , Receptores de Calcitriol/metabolismo , Células-Tronco/metabolismo , Vitamina D/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Lesões Experimentais por Radiação/patologia , Protetores contra Radiação/farmacologia , RatosRESUMO
Aim: Pulmonary toxicity is a well-known adverse reaction of bleomycin. In this study, we investigated the influence of XPC, PMAIP1/Noxa and TLR4 genetic variants on the development of bleomycin-induced lung injury (BILI) in south Indian patients with Hodgkin lymphoma. Materials & methods: Hodgkin lymphoma patients receiving adriamycin, bleomycin, vinblastine and dacarbazine regimen were recruited for the study and BILI was diagnosed based on symptoms and/or radiological signs. DNA samples were genotyped using real-time PCR. Results: A total of 78 patients were recruited in the study and BILI was observed in 17 (21.8%) patients. Polymorphisms in XPC, PMAIP1/Noxa and TLR4 genes were not associated with the development of BILI. Conclusion: The selected genetic polymorphisms do not predict the risk of BILI in south Indian population.
Assuntos
Doença de Hodgkin/genética , Lesão Pulmonar/genética , Adolescente , Adulto , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Doxorrubicina/efeitos adversos , Feminino , Doença de Hodgkin/complicações , Doença de Hodgkin/patologia , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/etiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptor 4 Toll-Like/análise , Receptor 4 Toll-Like/genética , Vimblastina/efeitos adversosRESUMO
Long non-coding RNAs (lncRNAs) have been widely highlighted due to their involvement in various types of cancers, including glioma; however, the exact mechanism and function by which they operate in regard to spinal cord glioma remain poorly understood. LOC101928963 was screened out for its differential expression in spinal cord glioma by microarray analysis. Therefore, this study was conducted to investigate the modulatory effects of LOC101928963 on spinal cord glioma by binding to phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). The expression of LOC101928963 and LOC101928963 was characterized in spinal cord glioma tissues, and their interaction was examined by dual-luciferase reporter gene assay. Cells with LOC101928963 that exhibited elevated or suppressed levels of PMAIP1 were established to substantiate the mechanism between LOC101928963 and PMAIP1. qRT-PCR and western blot methods were subsequently applied to determine the expression of cell-proliferation- and apoptosis-related genes in response to the alterations of LOC101928963 and PMAIP1. Glioma cell proliferation and apoptosis were assessed by MTT assay and flow cytometry. Decreased cell apoptosis and PMAIP1 expression, as well as overexpressed LOC101928963, were exhibited among spinal cord glioma tissues. LOC101928963 overexpression was observed to promote cell proliferation and cell-cycle entry and inhibit the process of apoptosis. PMAIP1, a target of LOC101928963, displayed a downregulated level following the elevation of LOC101928963. The present results strongly emphasize the neutralization effect of PMAIP1 overexpression on spinal cord glioma progression induced by the overexpression of LOC101928963. The data obtained during the study highlighted the inhibitory role of LOC101928963 silencing in spinal cord glioma through the increase in PMAIP1, which suggests a potential target in the treatment of spinal cord glioma.
RESUMO
Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways.
Assuntos
Sistemas CRISPR-Cas/genética , Testes Genéticos/métodos , Genoma/genética , Células-Tronco Pluripotentes/metabolismo , HumanosRESUMO
Background: Single nucleotide polymorphisms (SNPs) in DNA repair and Toll-like receptor (TLR) genes have been reported to be associated with Hodgkin Lymphoma (HL) risk. Since such associations may be ethnicity dependent, polymorphisms in TLR4 rs1554973, Xeroderma pigmentosum C (XPC) rs2228000, rs2228001 and a variant near PMAIP1/Noxa gene rs8093763 were here investigated with regard to HL susceptibility in a south Indian population. Normative frequencies of SNPs were established and compared with data for 1000 genome populations. Methods: We conducted a case control study consisting of 200 healthy volunteers and 101 cases with HL. DNA samples were genotyped using real-time PCR. Linkage disequilibrium (LD) analysis between rs2228000 and rs2228001 was performed using HaploView (version 4.2). Results: Among the studied variants, we observed that a variant rs8093763 located near PMAIP1/Noxa gene was associated with HL risk (OR=1.72 and 95% CI=1.004-2.93). The major allele frequencies of XPC (rs2228000 and rs2228001), TLR4 (rs1554973) and PMAIP1/NOXA (rs8093763) variants were 79%, 66%, 67% and 59% respectively. The studied frequencies were significantly different from 1000 genome populations. Conclusion: The results suggest that a variant rs8093763 located near the PMAIP1/Noxa gene may modify risk of HL. We found variation in distribution of polymorphic frequencies between the study population and 1000 genome populations. The results may help identify individual risk of development of HL in our south Indian population.
RESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. NSCLC diagnosed at an early stage can be highly curable with a positive prognosis, but biomarker limitations make it difficult to diagnose lung cancer at an early stage. To identify biomarkers for lung cancer development, we previously focused on the oncogenic roles of transcription factor TFAP2C in lung cancers and revealed the molecular mechanism of several oncogenes in lung tumorigenesis based on TFAP2C-related microarray analysis. RESULTS: In this study, we analyzed microarray data to identify tumor suppressor genes and nine genes downregulated by TFAP2C were screened. Among the nine genes, we focused on growth arrest and DNA-damage-inducible beta (GADD45B) and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) as representative TFAP2C-regulated tumor suppressor genes. It was observed that overexpressed TFAP2C resulted in inhibition of GADD45B and PMAIP1 expressions at both the mRNA and protein levels in NSCLC cells. In addition, downregulation of GADD45B and PMAIP1 by TFAP2C promoted cell proliferation and cell motility, which are closely associated with NSCLC tumorigenesis. CONCLUSION: This study indicates that GADD45B and PMAIP1 could be promising tumor suppressors for NSCLC and might be useful as prognostic markers for use in NSCLC therapy.
Assuntos
Humanos , Antígenos de Diferenciação/genética , Regulação para Baixo/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Fator de Transcrição AP-2/genética , Neoplasias Pulmonares/genética , RNA Mensageiro/análise , Biomarcadores Tumorais/análise , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , RNA Interferente Pequeno/análise , Linhagem Celular TumoralRESUMO
We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug.