RESUMO
POLR3B encodes the second-largest catalytic subunit of RNA polymerase III, an enzyme involved in transcription. Bi-allelic pathogenic variants in POLR3B are a well-established cause of hypomyelinating leukodystrophy. We describe six unrelated individuals with de novo missense variants in POLR3B and a clinical presentation substantially different from POLR3-related leukodystrophy. These individuals had afferent ataxia, spasticity, variable intellectual disability and epilepsy, and predominantly demyelinating sensory motor peripheral neuropathy. Protein modeling and proteomic analysis revealed a distinct mechanism of pathogenicity; the de novo POLR3B variants caused aberrant association of individual enzyme subunits rather than affecting overall enzyme assembly or stability. We expand the spectrum of disorders associated with pathogenic variants in POLR3B to include a de novo heterozygous POLR3B-related disorder.
Assuntos
Ataxia/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , RNA Polimerase III/genética , Adolescente , Adulto , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Feminino , Genes Recessivos/genética , Heterozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Proteômica/métodos , Adulto JovemRESUMO
OBJECTIVE: POLR3B encodes the second largest subunit of RNA polymerase III, which is essential for transcription of small non-coding RNAs. Biallelic pathogenic variants in POLR3B are associated with an inherited hypomyelinating leukodystrophy. Recently, de novo heterozygous variants in POLR3B were reported in six individuals with ataxia, spasticity, and demyelinating peripheral neuropathy. Three of these individuals had epileptic seizures. The aim of this article is to precisely define the epilepsy phenotype associated with de novo heterozygous POLR3B variants. METHODS: We used online gene-matching tools to identify 13 patients with de novo POLR3B variants. We systematically collected genotype and phenotype data from clinicians using two standardized proformas. RESULTS: All 13 patients had novel POLR3B variants. Twelve of 13 variants were classified as pathogenic or likely pathogenic as per American College of Medical Genetics (ACMG) criteria. Patients presented with generalized myoclonic, myoclonic-atonic, atypical absence, or tonic-clonic seizures between the ages of six months and 4 years. Epilepsy was classified as epilepsy with myoclonic-atonic seizures (EMAtS) in seven patients and "probable EMAtS" in two more. Seizures were treatment resistant in all cases. Three patients became seizure-free. All patients had some degree of developmental delay or intellectual disability. In most cases developmental delay was apparent before the onset of seizures. Three of 13 cases were reported to have developmental stagnation or regression in association with seizure onset. Treatments for epilepsy that were reported by clinicians to be effective were: sodium valproate, which was effective in five of nine patients (5/9) who tried it; rufinamide (2/3); and ketogenic diet (2/3). Additional features were ataxia/incoordination (8/13); microcephaly (7/13); peripheral neuropathy (4/13), and spasticity/hypertonia (6/13). SIGNIFICANCE: POLR3B is a novel genetic developmental and epileptic encephalopathy (DEE) in which EMAtS is the predominant epilepsy phenotype. Ataxia, neuropathy, and hypertonia may be variously observed in these patients.
RESUMO
RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.
Assuntos
Anodontia , Anormalidades Craniofaciais , Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Mutação/genéticaRESUMO
POLR3B gene encodes the 2nd largest catalytic subunit and affects the function of RNA polymerase III enzymes in transcription. Bi-allelic variants in POLR3B pathogenically cause hypomyelinating leukodystrophy-8 (HLD8). Herein, we recruited a family with two patients, who presented clinically with cerebellar atrophy, intellectual disability, hypogonadotropic hypogonadism, and visual problems. We identified the two affected siblings carrying the compound heterozygous variations (c.165_167del; c.1615G>T) in POLR3B by trio-whole-exome sequencing (trio-WES). The qPCR and western blot showed that both transcriptional and translational levels of the mutation (c.165_167del, p.I55_K56delinsM) were sharply attenuated. Following that, a thorough functional examination of a zebrafish line disrupted for human POLR3B validated the pathogenic effects of the two mutations. Our research broadens the spectrum of HLD8-related pathogenic POLR3B mutations and provides new molecular and animal evidence.
Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , RNA Polimerase III , Animais , Humanos , RNA Polimerase III/genética , Irmãos , Peixe-Zebra/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , MutaçãoRESUMO
BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.
Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismoRESUMO
BACKGROUND: Charcot-Marie-Tooth (CMT) disease is a group of inherited peripheral neuropathies, which are subdivided into demyelinating and axonal forms. Biallelic mutations in POLR3B are the well-established cause of hypomyelinating leukodystrophy, which is characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism. To date, only one study has reported the demyelinating peripheral neuropathy phenotype caused by heterozygous POLR3B variants. CASE PRESENTATION: A 19-year-old male patient was referred to our hospital for progressive muscle weakness of the lower extremities. Physical examination showed muscle atrophy, sensory loss and deformities of the extremities. Nerve conduction studies and electromyography tests revealed sensorimotor demyelinating polyneuropathy with secondary axonal loss. Trio whole-exome sequencing revealed a de novo variant in POLR3B (c.3137G > A). CONCLUSIONS: In this study, we report the case of a Chinese patient with a de novo variant in POLR3B (c.3137G > A), who manifested demyelinating CMT phenotype without additional neurological or extra-neurological involvement. This work is the second report on POLR3B-related CMT.
Assuntos
Doença de Charcot-Marie-Tooth , Adulto , Doença de Charcot-Marie-Tooth/genética , China , Heterozigoto , Humanos , Masculino , Mutação/genética , Fenótipo , RNA Polimerase III , Adulto JovemRESUMO
4H leukodystrophy, also known as Pol III-related leukodystrophy, is a rare autosomal recessive neurodegenerative disorder characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism. It is caused by biallelic mutations in POLR3A, POL3RB, or POLR1C. So far, only two patients have been described with homozygosity for the common c.1568T>A (p.Val523Glu) POLR3B mutation, both of them showing a remarkably mild clinical course. Here, we report another patient with homozygosity for the same mutation, but with a more severe phenotype including ataxia, developmental delay, and intellectual disability. This information is of importance for clinicians to provide comprehensive counseling to patients with 4H leukodystrophy and their families.
Assuntos
Predisposição Genética para Doença , Leucodistrofia Metacromática/genética , RNA Polimerase III/genética , Adulto , RNA Polimerases Dirigidas por DNA/genética , Feminino , Humanos , Leucodistrofia Metacromática/patologia , Mutação/genética , Adulto JovemRESUMO
INTRODUCTION AND AIM OF THE STUDY: White matter disorders represent a spectrum of neurological diseases frequently associated with an unfavourable prognosis and a delay in diagnostics. We report the broad phenotypic spectrum of a rare hypomyelinating leukodystrophy and three novel mutations. Further, we aim to explore the role of the combined clinical and neuroimaging diagnostic approach in the era of whole exome sequencing. MATERIALS AND METHODS: We present a clinical, neuroimaging and molecular-genetic characterisation of four patients from three families suffering from a rare genetic leukoencephalopathy. Two severely affected siblings (P1, P2) manifested a profound developmental delay, cerebellar symptomatology, microcephaly, failure to thrive, short stature and delayed teeth eruption with oligodontia. The other two patients (P3, P4), on the contrary, suffer from substantially less serious impairment with mild to moderate developmental delay and cerebellar symptomatology, delayed teeth eruption, or well-manageable epilepsy. In all four patients, magnetic resonance revealed cerebellar atrophy and supratentorial hypomyelination with T2-weight hypointensities in the areas of the ventrolateral thalamic nuclei, corticospinal tract and the dentate nuclei. RESULTS: Using whole-exome sequencing in P1, P2 and P3, and targeted sequencing in P4, pathogenic variants were disclosed in POLR3B, a gene encoding one of 17 subunits of DNA-dependent RNA polymerase III - all patients were compound heterozygotes for point mutations. Three novel mutations c.727A>G (p.Met243Val) and c.2669G>A (p.Arg890His) (P1, P2), and c.1495G>A (p.Met499Val) (P3) were found. Magnetic resonance revealed the characteristic radiological pattern of POLR3-leukodystrophies in our patients. CONCLUSION AND CLINICAL IMPLICATIONS: The diagnosis of POLR3-associated leukodystrophies can be significantly accelerated using the combined clinical and neuroradiological recognition pattern. Therefore, it is of crucial importance to raise the awareness of this rare disorder among clinicians. Molecular-genetic analyses are indispensable for a swift diagnosis confirmation in cases of clear clinical suspicion, and for diagnostic search in patients with less pronounced symptomatology. They represent an invaluable tool for unravelling the complex genetic background of heritable white matter disorders.
Assuntos
Doenças Cerebelares , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , RNA Polimerase III/genética , Humanos , Mutação , NeuroimagemRESUMO
BACKGROUND: A constellation of neurodegenerative disorders exists (Gordon Holmes syndrome, 4H leucodystrophy, Boucher-Neuhauser syndrome) in which patients suffer from both neurological disease (typically manifested by ataxia) and reproductive failure (idiopathic hypogonadotropic hypogonadism (IHH)). POLR3B, which encodes the second largest subunit of RNA polymerase III (pol III), and POLR3A, which forms the pol III catalytic centre, are associated with 4H leucodystrophy. METHODS: Whole exome sequencing was performed on a large cohort of subjects with IHH (n=565). Detailed neuroendocrine studies were performed in some individuals within this cohort. RESULTS: Four individuals (two of them siblings) were identified with two rare nucleotide variants in POLR3B. On initial evaluation, all subjects were free of neurological disease. One patient underwent treatment with exogenous pulsatile gonadotropin-releasing hormone for 8â weeks which failed to result in normalisation of his sex steroid milieu due to pituitary resistance. CONCLUSIONS: These findings suggest that the spectrum of phenotypes resulting from POLR3B mutations is wider than previously believed and that POLR3B can be associated exclusively with disorders characterised by abnormal gonadotropin secretion.
Assuntos
Hipogonadismo/genética , Mutação/genética , RNA Polimerase III/genética , Adolescente , Exoma/genética , Feminino , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Hipogonadismo/tratamento farmacológico , Masculino , Células Neuroendócrinas/efeitos dos fármacos , Adulto JovemRESUMO
Wiedemann-Rautenstrauch syndrome (WRS) is a neonatal progeroid disorder characterized by growth retardation, lipodystrophy, a distinctive face, and dental anomalies. Patients reported to date demonstrate a remarkable variability in phenotype, which hampers diagnostics. We performed a literature search, and analyzed 51 reported patients, using the originally reported patients as "gold standard." In 15 patients sufficient information and photographic evidence was available to confirm the clinical diagnosis. In 12 patients the diagnosis was suggestive but lack of data prevented a definite diagnosis, and in 24 patients an alternative diagnosis was likely. Core manifestations of the syndrome are marked pre-natal and severe post-natal growth retardation, an unusual face (triangular shape, sparse hair, small mouth, pointed chin), dental anomalies (natal teeth; hypodontia), generalized lipodystrophy with localized fat masses, and-in some cases-progressive ataxia and tremor. It has been suggested that the syndrome might be caused by biallelic variants in POLR3A, identified by exome sequencing in a single patient only. Therefore, we compared the WRS phenotype with characteristics of conditions known to be caused by autosomal recessively inherited POLR3A mutations. There are major differences but there are also similarities in phenotype, which sustain the suggestion that the syndrome can be caused by disturbed POLR3A functioning.
RESUMO
PURPOSE: To report on a new phenotype in a patient carrying a novel, undescribed de novo variant in POLR3B, affected by generalized myoclonic epilepsy and neurodevelopmental disorder, without neuropathy. It is known that biallelic pathogenic variants in POLR3B cause hypomyelinating leukodystrophy-8, and heterozygous de novo variants are described in association to a phenotype characterized by predominantly demyelinating sensory-motor peripheral neuropathy, ataxia, spasticity, intellectual disability and epilepsy, in which the peripheral neuropathy is often the main clinical presentation. METHODS: We collected clinical, electrophysiological and neuroimaging data from the affected subject and performed a Trio-Clinical Exome Sequencing. RESULTS: We detected a de novo novel heterozygous missense variant c.1132A>G in POLR3B (NM_018082.6) that was considered as likely pathogenic following ACMG criteria. We also consulted our custom genomic database of a total of 1485 patients that were genetically analysed from 2018 for epilepsy, and found no other de novo variants in the POLR3B gene. CONCLUSION: We hypothesize a possible genotype-phenotype correlation, particularly regarding epilepsy. We also provide a review of the literature about the previously described POLR3B heterozygous patients, with particular attention to the epileptic phenotype, underlining the association between POLR3B and early onset myoclonic epilepsy, which can represent the main manifestation of the disease at its onset.
Assuntos
Epilepsias Mioclônicas , RNA Polimerase III , Humanos , RNA Polimerase III/genética , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Masculino , Mutação de Sentido Incorreto , Feminino , Fenótipo , Estudos de Associação GenéticaRESUMO
4H leukodystrophy, one of the POLR3-related leukodystrophy, is a rare hereditary brain white matter disease with characteristic clinical presentation and imaging findings. Hypomyelination, hypodontia, and hypogonadotropic hypogonadism is mainly presented in patients with 4H leukodystrophy. Case presentation: A 4-year-old boy presented in the neurologic clinic with delayed psychomotor development and progressive neurologic symptoms that started from the age of 20 months. Physical examination revealed ataxic features and a global development delay. The MRI was significant for hypomyelination. The most common causes of leukodystrophy were rolled out. He was referred to an inherited metabolic disease specialist under suspect of inborn metabolic errors because of laboratory analysis, which showed elevated levels of lactic acid, pyruvate, 4-Hydroxy-Phenylactic acid, 3-Hydroxy propionic acid, and decreased levels of PCO2, HCO3, total CO2, 25-Hydroxyvitamin D. These results were unspecific and mitochondrial disease was highly suspected. However, the genetic study was requested to get a defined diagnosis and treatment; the whole exon sequencing result showed a homozygous variant of uncertain significance mutation; related to an amino acid change from Ile to Thr at position 1002 in the POLR3B gene, which helped us to reveal the final diagnosis, and the genetic counseling were recommended for the next pregnancies. Conclusion: POLR3-related Leukodystrophy is a very rare disease. The early diagnosis should be raised depending on clinical history and MRI findings after other conditions were rolled out, and the confirmed diagnosis depends on the genetic study.
RESUMO
Objective: POLR3-HLD or 4H leukodystrophy is an autosomal recessive disorder characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, and caused by variants in POLR3A, POLR3B, POLR1C, or POLR3K genes. Neurological and non-neurological clinical features and disease severity vary. While previous studies reference variable cognition, this is the first report of 4H detailing a comprehensive neuropsychological assessment. Method: The current study presents a 20-year-old, English-speaking, right-handed, non-Hispanic White female with 12 years of education with genetically confirmed 4H POLR3B-related leukodystrophy without hormonal replacement treatment. Results: At age 4, developmental delays, ataxia, hearing loss, and abnormal dentition were present. Imaging, endocrinology, and neurologic examinations revealed hypomyelination, reduced cerebellar volume, delayed bone age density, osteopenia, and evidence of adrenarche without signs of true puberty. Neuropsychological assessment at age 20 revealed global cognitive impairment with intellectual, attention, verbal memory retrieval, construction, executive (e.g. processing speed, sustained attention) and math computation deficits, along with behavioral dysregulation. Conclusion: We present the first detailed neuropsychological assessment of a patient with 4H leukodystrophy. The neuropsychological assessment revealed cognitive and behavioral dysexecutive deficits aligning with hypomyelination observed on imaging. Further longitudinal studies are needed to shed light on the neurobehavioral presentation associated with this disorder to assist care providers, patients, and their families.
RESUMO
POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.
RESUMO
BACKGROUND: Wiedemann-Rautenstrauch syndrome (WRS) is a rare autosomal recessive neonatal progeroid disorder characterized by prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, and mental impairment. CASE PRESENTATION: A 6-year-old patient, who initially presented with multiple postnatal abnormalities, facial dysplasia, micrognathia, skull appearance, hallux valgus, and congenital dislocation of the hip, was recruited in this study. The patient was initially diagnosed with progeria. The mother of the patient had abnormal fetal development during her second pregnancy check-up, and the clinical phenotype of the fetus was similar to that of the patient. Whole-exome sequencing (WES) of the patient was performed, and POLR3B compound heterozygous variants-c.2191G > C:p.E731Q and c.3046G > A:p.V1016M-were identified in the patient. Using Sanger sequencing, we found that the phenotypes and genotypes were segregated within the pedigree. These two variants are novel and not found in the gnomAD and 1000 Genomes databases. The two mutation sites are highly conserved between humans and zebrafish. CONCLUSIONS: Our study not only identified a novel WRS-associated gene, POLR3B, but also broadened the mutational and phenotypic spectra of POLR3B. Furthermore, WES may be useful for identifying rare disease-related genetic variants.
Assuntos
Sequenciamento do Exoma , Retardo do Crescimento Fetal/genética , Progéria/genética , RNA Polimerase III/genética , Criança , Genótipo , Humanos , Masculino , Linhagem , FenótipoRESUMO
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
RESUMO
Recessive mutations in the ubiquitously expressed POLR3A and POLR3B genes are the most common cause of POLR3-related hypomyelinating leukodystrophy (POLR3-HLD), a rare childhood-onset disorder characterized by deficient cerebral myelin formation and cerebellar atrophy. POLR3A and POLR3B encode the two catalytic subunits of RNA Polymerase III (Pol III), which synthesizes numerous small non-coding RNAs. We recently reported that mice homozygous for the Polr3a mutation c.2015G > A (p.Gly672Glu) have no neurological abnormalities and thus do not recapitulate the human POLR3-HLD phenotype. To determine if other POLR3-HLD mutations can cause a leukodystrophy phenotype in mouse, we characterized mice carrying the Polr3b mutation c.308G > A (p.Arg103His). Surprisingly, homozygosity for this mutation was embryonically lethal with only wild-type and heterozygous animals detected at embryonic day 9.5. Using proteomics in a human cell line, we found that the POLR3B R103H mutation severely impairs assembly of the Pol III complex. We next generated Polr3aG672E/G672E/Polr3b+/R103Hdouble mutant mice but observed that this additional mutation was insufficient to elicit a neurological or transcriptional phenotype. Taken together with our previous study on Polr3a G672E mice, our results indicate that missense mutations in Polr3a and Polr3b can variably impair mouse development and Pol III function. Developing a proper model of POLR3-HLD is crucial to gain insights into the pathophysiological mechanisms involved in this devastating neurodegenerative disease.
Assuntos
Perda do Embrião/enzimologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação/genética , RNA Polimerase III/genética , Animais , Sequência de Bases , Perda do Embrião/genética , Regulação Enzimológica da Expressão Gênica , Técnicas de Introdução de Genes , Células HEK293 , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Homozigoto , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Atividade Motora , Bainha de Mielina/metabolismo , RNA Polimerase III/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Pol III-related leukodystrophy is a recently recognized category of leukodystrophy with characteristic clinical presentation and imaging findings. These cases are diagnosed by the combination of typical clinical presentation, brain magnetic resonance imaging findings, and the presence of biallelic pathogenic mutations in three specific genes. We present the case of a 6-year-old girl who demonstrated the classic clinical and imaging features of this disorder. This case report aims to raise awareness of this disorder so that it is easily recognized in the appropriate setting.
RESUMO
BACKGROUND & AIMS: The continuously self-renewing mammalian intestinal epithelium, with high cellular turnover, depends on adequate protein synthesis for its proliferative capacity. RNA polymerase III activity is closely related to cellular growth and proliferation. Here, we studied the role of Polr3b, a large RNA polymerase III subunit, in the mammalian intestinal epithelium. METHODS: We derived mice with an intestinal epithelium-specific hypomorphic mutation of the Polr3b gene, using VillinCre-mediated gene ablation. Phenotypic consequences of the Polr3b mutation on the intestinal epithelium in mice were assessed using histological and molecular methodologies, including genetic lineage tracing. RESULTS: The Polr3b mutation severely reduced survival and growth in mice during the first postnatal week, the period when the expansion of the intestinal epithelium, and thus the requirement for protein synthesis, are highest. The neonatal intestinal epithelium of Polr3bloxP/loxP;VillinCre mice was characterized by areas with reduced proliferation, abnormal epithelial architecture, loss of Wnt signaling and a dramatic increase in apoptotic cells in crypts. Genetic lineage tracing using Polr3bLoxP/LoxP;Rosa26-lox-stop-lox-YFP;VillinCre mice demonstrated that in surviving mutant mice, Polr3b-deficient dying crypts were progressively replaced by 'Cre-escaper' cells that had retained wild type Polr3b function. In addition, enteroids cultured from Polr3bloxP/loxP;VillinCre mice show reduced proliferative activity and increased apoptosis. CONCLUSIONS: We provide evidence for an essential role of the Pol III subunit Polr3b in orchestrating the maintenance of the intestinal crypt during early postnatal development in mice.
RESUMO
BACKGROUND: Mutations of POLR3A and POLR3B have been reported to cause several allelic hypomyelinating disorders, including hypomyelination with hypogonadotropic hypogonadism and hypodontia (4H syndrome). PATIENTS AND METHODS: To clarify the difference in MRI between the two genotypes, we reviewed MRI in three patients with POLR3B mutations, and three with POLR3A mutations. RESULTS: Though small cerebellar hemispheres and vermis are common MRI findings with both types of mutations, MRI in patients with POLR3B mutations revealed smaller cerebellar structures, especially vermis, than those in POLR3A mutations. MRI also showed milder hypomyelination in patients with POLR3B mutations than those with POLR3A mutations, which might explain milder clinical manifestations. CONCLUSIONS: MRI findings are distinct between patients with POLR3A and 3B mutations, and can provide important clues for the diagnosis, as these patients sometimes have no clinical symptoms suggesting 4H syndrome.