RESUMO
The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.
Assuntos
Tecido Adiposo , Macrófagos , PPAR gama , Rosiglitazona , Transplante Autólogo , Animais , PPAR gama/metabolismo , PPAR gama/genética , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Rosiglitazona/farmacologia , Masculino , Diferenciação Celular , Adipogenia , Adipócitos/metabolismo , Camundongos , RatosRESUMO
BACKGROUND: Hepatic fibrosis, a common pathological process that occurs in end-stage liver diseases, is a serious public health problem and lacks effective therapy. Notoginsenoside R1 (NR1) is a small molecule derived from the traditional Chinese medicine Sanqi, exhibiting great potential in treating diverse metabolie disorders. Here we aimed to enquired the role of NR1 in liver fibrosis and its underlying mechanism in hepatoprotective effects. METHODS: We investigated the anti-fibrosis effect of NR1 using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated JS-1, LX-2 cells and primary hepatic stellate cell. Cell samples treated by NR1 were collected for transcriptomic profiling analysis. PPAR-γ mediated TGF-ß1/Smads signaling was examined using PPAR-γ selective inhibitors and agonists intervention, immunofluorescence staining and western blot analysis. Additionally, we designed and studied the binding of NR1 to PPAR-γ using molecular docking. RESULTS: NR1 obviously attenuated liver histological damage, reduced serum ALT, AST levels, and decreased liver fibrogenesis markers in mouse mode. Mechanistically, NR1 elevated PPAR-γ and decreased TGF-ß1, p-Smad2/3 expression. The TGF-ß1/Smads signaling pathway and fibrotic phenotype were altered in JS-1 cells after using PPAR-γ selective inhibitors and agonists respectively, confirming PPAR-γ played a pivotal protection role inNR1 treating liver fibrosis. Further molecular docking indicated NR1 had a strong binding tendency to PPAR-γ with minimum free energy. CONCLUSIONS: NR1 attenuates hepatic stellate cell activation and hepatic fibrosis by elevating PPAR-γ to inhibit TGF-ß1/Smads signalling. NR1 may be a potential candidate compound for reliving liver fibrosis.
Assuntos
Ginsenosídeos , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibrose , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
A high-fat diet (HFD) contributes to the pathogenesis of various inflammatory and metabolic diseases. Previous research confirms that under HFD conditions, the extraorbital lacrimal glands (ELGs) can be impaired, with significant infiltration of pro-inflammatory macrophages (Mps). However, the relationship between HFD and Mps polarization in the ELGs remains unexplored. We first identified and validated the differential expression of PPAR-γ in murine ELGs fed ND and HFD through RNA sequencing. Tear secretion was measured using the Schirmer test. Lipid droplet deposition within the ELGs was observed through Oil Red O staining and transmission electron microscopy. Mps phenotypes were determined through quantitative RT-PCR, immunofluorescence, and flow cytometric analysis. An in vitro high-fat culture system for Mps was established using palmitic acid (PA), with supernatants collected for co-culture with lacrimal gland acinar cells. Gene expression was determined through ELISA, immunofluorescence, immunohistochemistry, quantitative RT-PCR, and Western blot analysis. Pioglitazone reduced M1-predominant infiltration induced by HFD by increasing PPAR-γ levels in ELGs, thereby alleviating lipid deposition and enhancing tear secretion. In vitro tests indicated that PPAR-γ agonist shifted Mps from M1-predominant to M2-predominant phenotype in PA-induced Mps, reducing lipid synthesis in LGACs and promoting lipid catabolism, thus alleviating lipid metabolic disorders within ELGs. Conversely, the PPAR-γ antagonist induced opposite effects. In summary, the lacrimal gland is highly sensitive to high-fat and lipid metabolic disorders. Downregulation of PPAR-γ expression in ELGs induces Mps polarization toward predominantly M1 phenotype, leading to lipid metabolic disorder and inflammatory responses via the NF-κb/ERK/JNK/P38 pathway.
Assuntos
Dieta Hiperlipídica , Aparelho Lacrimal , PPAR gama , Pioglitazona , Animais , Pioglitazona/farmacologia , Dieta Hiperlipídica/efeitos adversos , Camundongos , Aparelho Lacrimal/metabolismo , Aparelho Lacrimal/efeitos dos fármacos , Aparelho Lacrimal/patologia , PPAR gama/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacosRESUMO
Nicotinamide adenine dinucleotide (NAD+) is a universal coenzyme regulating cellular energy metabolism in many cell types. Recent studies have demonstrated the close relationships between defective NAD+ metabolism and aging and age-associated metabolic diseases. The major purpose of the present study was to test the hypothesis that NAD+ biosynthesis, mediated by a rate-limiting NAD+ biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT), is essential for maintaining normal adipose tissue function and whole body metabolic health during the aging process. To this end, we provided in-depth and comprehensive metabolic assessments for female adipocyte-specific Nampt knockout (ANKO) mice during aging. We first evaluated body fat mass in young (≤4-mo-old), middle aged (10-14-mo-old), and old (≥18-mo-old) mice. Intriguingly, adipocyte-specific Nampt deletion protected against age-induced obesity without changing energy balance. However, data obtained from the hyperinsulinemic-euglycemic clamp procedure (HECP) demonstrated that, despite the lean phenotype, old ANKO mice had severe insulin resistance in skeletal muscle, heart, and white adipose tissue (WAT). Old ANKO mice also exhibited hyperinsulinemia and hypoadiponectinemia. Mechanistically, loss of Nampt caused marked decreases in WAT gene expression of lipogenic targets of peroxisome proliferator-activated receptor gamma (PPAR-γ) in an age-dependent manner. In addition, administration of a PPAR-γ agonist rosiglitazone restored fat mass and improved metabolic abnormalities in old ANKO mice. In conclusion, these findings highlight the importance of the NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue, and whole body metabolic function in female mice during aging.NEW & NOTEWORTHY Defective NAD+ metabolism is associated with aging and age-associated metabolic diseases. In the present study, we provided in-depth metabolic assessments in female mice with adipocyte-specific inactivation of a key NAD+ biosynthetic enzyme NAMPT and revealed an unexpected role of adipose tissue NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue and whole body metabolic health during the aging process.
Assuntos
Adipócitos , Envelhecimento , NAD , Nicotinamida Fosforribosiltransferase , Animais , Feminino , Camundongos , Adipócitos/metabolismo , Envelhecimento/metabolismo , Citocinas/metabolismo , Metabolismo Energético/genética , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Obesidade/metabolismo , Obesidade/genética , Fenótipo , PPAR gama/metabolismo , PPAR gama/genéticaRESUMO
Obesity is an important risk factor for breast cancer in women before and after menopause. Adipocytes, key mediators in the tumor microenvironment, play a pivotal role in the relationship between obesity with cancer. However, the potential of dietary components in modulating this relationship remains underexplored. Genistein, a soy-derived isoflavone, has shown promise in reducing breast cancer risk, attenuating obesity-associated inflammation, and improving insulin resistance. However, there are no reports examining whether genistein has the ability to reduce the effects of obesity on breast tumor development. In this study, we constructed a mammary tumor model in ovariectomized obese mice and examined the effects of genistein on body condition and tumor growth. Moreover, the effects of genistein on the tumor microenvironment were examined via experimental observation of peritumoral adipocytes and macrophages. In addition, we further investigated the effect of genistein on adipocyte and breast cancer cell crosstalk via coculture experiments. Our findings indicate that dietary genistein significantly alleviates obesity, systemic inflammation, and metabolic disorders induced by a high-fat diet in ovariectomized mice. Notably, it also inhibits tumor growth in vivo. The impact of genistein extends to the tumor microenvironment, where it reduces the production of cancer-associated adipocytes (CAAs) and the recruitment of M2d-subtype macrophages. In vitro, genistein mitigates the transition of adipocytes into CAAs and inhibits the expression of inflammatory factors by activating PPAR-γ pathway and degrading nuclear NF-κB. Furthermore, it impedes the acquisition of invasive properties and epithelialâmesenchymal transition in breast cancer cells under CAA-induced inflammation, disrupting the Wnt3a/ß-catenin pathway. Intriguingly, the PPAR-γ inhibitor T0070907 counteracted the effects of genistein in the coculture system, underscoring the specificity of its action. Our study revealed that genistein can mitigate the adverse effects of obesity on breast cancer by modulating the tumor microenvironment. These findings provide new insights into how genistein intake and a soy-based diet can reduce breast cancer risk.
Assuntos
Adipócitos , Neoplasias da Mama , Genisteína , Obesidade , Microambiente Tumoral , Genisteína/farmacologia , Genisteína/uso terapêutico , Animais , Microambiente Tumoral/efeitos dos fármacos , Feminino , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Humanos , Linhagem Celular Tumoral , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Suplementos Nutricionais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , PPAR gama/metabolismoRESUMO
Traumatic brain injury (TBI) is a disabling neurotraumatic condition and the leading cause of injury-related deaths and disability in the United States. Attenuation of neuroinflammation early after TBI is considered an important treatment target; however, while these inflammatory responses can induce secondary brain injury, they are also involved in the repair of the nervous system. Pioglitazone, which activates peroxisome proliferator-activated receptor gamma, has been shown to decrease inflammation acutely after TBI, but the long-term consequences of its use remain unknown. For this reason, the impacts of treatment with pioglitazone during the acute/subacute phase (30 min after injury and each subsequent 24 h for 5 days) after TBI were interrogated during the chronic phase (30- and 274-days post-injury (DPI)) in mice using the controlled cortical impact model of experimental TBI. Acute/subacute pioglitazone treatment after TBI results in long-term deleterious consequences, including disruption of tau homeostasis, chronic glial cell activation, neuronal pathology, and worsened injury severity particularly at 274 DPI, with male mice being more susceptible than female mice. Further, male pioglitazone-treated TBI mice exhibited increased dominant and offensive-like behavior while having a decreased non-social exploring behavior at 274 DPI. After TBI, both sexes exhibited glial activation at 30 DPI when treated with pioglitazone; however, while injury severity was increased in females it was not impacted in male mice. This work reveals that although pioglitazone has been shown to lead to attenuated TBI outcomes acutely, sex-based differences, timing and long-term consequences of treatment with glitazones must be considered and further studied prior to their clinical use for TBI therapy.
RESUMO
Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).
Assuntos
Glioblastoma , Agonistas PPAR-gama , Temozolomida , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , PPAR gama/metabolismo , Agonistas PPAR-gama/farmacologia , Agonistas PPAR-gama/uso terapêutico , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Temozolomida/uso terapêuticoRESUMO
BACKGROUND: The cannabigerol derivative VCE-003.2, which has activity at the peroxisome proliferator-activated receptor-γ has afforded neuroprotection in experimental models of Parkinson's disease (PD) based on mitochondrial dysfunction (6-hydroxydopamine-lesioned mice) and neuroinflammation (LPS-lesioned mice). Now, we aim to explore VCE-003.2 neuroprotective properties in a PD model that also involves protein dysregulation, other key event in PD pathogenesis. METHODS: To this end, an adeno-associated viral vector serotype 9 coding for a mutated form of the α-synuclein gene (AAV9-SynA53T) was unilaterally delivered in the substantia nigra pars compacta (SNpc) of mice. This model leads to motor impairment and progressive loss of tyrosine hydroxylase-labelled neurons in the SNpc. RESULTS: Oral administration of VCE-003.2 at 20 mg/kg for 14 days improved the performance of mice injected with AAV9-SynA53T in various motor tests, correlating with the preservation of tyrosine hydroxylase-labelled neurons in the SNpc. VCE-003.2 also reduced reactive microgliosis and astrogliosis in the SNpc. Furthermore, we conducted a transcriptomic analysis in the striatum of mice injected with AAV9-SynA53T and treated with either VCE-003.2 or vehicle, as well as control animals. This analysis aimed to identify gene families specifically altered by the pathology and/or VCE-003.2 treatment. Our data revealed pathology-induced changes in genes related to mitochondrial function, lysosomal cell pathways, immune responses, and lipid metabolism. In contrast, VCE-003.2 treatment predominantly affected the immune response through interferon signaling. CONCLUSION: Our study broadens the neuroprotective potential of VCE-003.2, previously described against mitochondrial dysfunction, oxidative stress, glial reactivity and neuroinflammation in PD. We now demonstrate its efficacy against another key pathogenic event in PD as α-synuclein dysregulation. Furthermore, our investigation sheds light on the molecular mechanisms underlying VCE-003.2 revealing its role in regulating interferon signaling. These findings, together with a favorable ADMET profile, enhance the preclinical interest of VCE-003.2 towards its future clinical development in PD.
Assuntos
Modelos Animais de Doenças , Sinucleinopatias , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sinucleinopatias/genética , Sinucleinopatias/tratamento farmacológico , Sinucleinopatias/patologia , Sinucleinopatias/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/genética , QuinonasRESUMO
BACKGROUND: Acute Kidney Injury (AKI), a prevalent complication of Liver Transplantation (LT) that occurs during the perioperative period has been established to profoundly impact the prognosis of transplant recipients. This study aimed to investigate the mechanism of the hepatic IRI-induced AKI and to identify potential therapeutic targets for treating this condition and improving the prognosis of LT patients. METHODS: An integrated transcriptomics and proteomics approach was employed to investigate transcriptional and proteomic alterations in hepatic IRI-induced AKI and the hypoxia-reoxygenation (H/R) model using TCMK-1 cells and the hepatic IRI-induced AKI mouse model using male C57BL/6 J mice were employed to elucidate the underlying mechanisms. Hematoxylin-eosin staining, reverse transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot were used to assess the effect of Rosiglitazone (RGZ) on hepatic IRI-induced AKI in vitro and in vivo. RESULTS: According to the results, 322 genes and 128 proteins were differentially expressed between the sham and AKI groups. Furthermore, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analyses revealed significant enrichment in pathways related to amino acid and lipid metabolism. Additionally, the Protein-Protein Interaction (PPI) network analysis of the kidney tissues obtained from a hepatic IRI-induced AKI mouse model highlighted arachidonic acid metabolism as the most prominent pathway. Animal and cellular analyses further revealed that RGZ, a PPAR-γ agonist, could inhibit the expression of the PPAR-γ/NF-κB signaling pathway-associated proteins in in vitro and in vivo. CONCLUSIONS: These findings collectively suggest that RGZ ameliorates hepatic IRI-induced AKI via PPAR-γ/NF-κB signaling pathway modulation, highlighting PPAR-γ as a crucial therapeutic target for AKI prevention post-LT.
Assuntos
Injúria Renal Aguda , Ácido Araquidônico , Fígado , Camundongos Endogâmicos C57BL , NF-kappa B , PPAR gama , Traumatismo por Reperfusão , Rosiglitazona , Transdução de Sinais , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Masculino , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , PPAR gama/metabolismo , NF-kappa B/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ácido Araquidônico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Linhagem Celular , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Mapas de Interação de ProteínasRESUMO
BACKGROUND: Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS: Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION: This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.
Assuntos
Lesão Pulmonar Aguda , Lactoferrina , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Anti-Inflamatórios/farmacologia , Apoptose , Lactoferrina/farmacologia , Lipopolissacarídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
A novel series of thiazole derivatives with pyrazole scaffold 16a-l as hybrid rosiglitazone/celecoxib analogs was designed, synthesized and tested for its PPAR-γ activation, α-glucosidase, α-amylase and COX-2 inhibitory activities. Regarding the anti-diabetic activity, all compounds were assessed in vitro against PPAR-γ activation, α-glucosidase and α-amylase inhibition in addition to in vivo hypoglycemic activity (one day and 15 days studies). Compounds 16b, 16c, 16e and 16 k showed good PPAR-γ activation (activation % ≈ 72-79 %) compared to that of the reference drug rosiglitazone (74 %). In addition, the same derivatives 16b, 16c, 16e and 16 k showed the highest inhibitory activities against α-glucosidase (IC50 = 0.158, 0.314, 0.305, 0.128 µM, respectively) and against α-amylase (IC50 = 32.46, 23.21, 7.74, 35.85 µM, respectively) compared to the reference drug acarbose (IC50 = 0.161 and 31.46 µM for α-glucosidase and α-amylase, respectively). The most active derivatives 16b, 16c, 16e and 16 k also revealed good in vivo hypoglycemic effect comparable to that of rosiglitazone. In addition, compounds 16b and 16c had the best COX-2 selectivity index (S.I. = 18.7, 31.7, respectively) compared to celecoxib (S.I. = 10.3). In vivo anti-inflammatory activity of the target derivatives 16b, 16c, 16e and 16 k supported the results of in vitro screening as the derivatives 16b and 16c (ED50 = 8.2 and 24 mg/kg, respectively) were more potent than celecoxib (ED50 = 30 mg/kg). In silico docking, ADME, toxicity, and molecular dynamic studies were carried out to explain the interactions of the most active anti-diabetic and anti-inflammatory compounds 16b, 16c, 16e and 16 k with the target enzymes in addition to their physiochemical parameters.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , PPAR gama , Pirazóis , Tiazóis , alfa-Amilases , alfa-Glucosidases , PPAR gama/metabolismo , alfa-Glucosidases/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Estrutura-Atividade , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Animais , Estrutura Molecular , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Humanos , Ratos , Descoberta de Drogas , Agonistas PPAR-gamaRESUMO
Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.
Assuntos
Anexina A1 , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Encefalopatia Associada a Sepse , Animais , Anexina A1/metabolismo , Anexina A1/farmacologia , Ratos , Fármacos Neuroprotetores/farmacologia , Masculino , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , PPAR gama/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacosRESUMO
BACKGROUND: Drug resistance is an important factor in the fight against influenza A virus (IAV). Natural products offer a rich source of lead compounds for the discovery of novel antiviral drugs. In a previous study, we isolated the sorbicillinoid polyketide HSL-2 from the mycelium of fungus Trichoderma sp. T-4-1. Here, we show that this compound exerts strong antiviral activity against a panel of IAVs. METHODS: The immunofluorescence and qRT-PCR assays were used to detect the inhibitory effect of HSL-2 toward the replication of influenza virus and IAV-induced expression of the pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1ß. RESULTS: The results indicated that HSL-2 inhibited influenza virus replication, and it significantly inhibited IAV-induced overexpression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß through modulating the PPAR-γ/NF-κB pathway. Notably, this effect was decreased when cells were transfected with PPAR-γ siRNA or treated with the PPAR-γ inhibitor T0070907. In addition, HSL-2 was able to attenuate lung inflammatory responses and to improve lung lesions in a mouse model of IAV infection. CONCLUSIONS: In this paper, we identified a microbial secondary metabolite, HSL-2, with anti-influenza virus activity. This report is the first to describe the antiviral activity and mechanism of action of HSL-2, and it provides a new strategy for the development of novel anti-influenza virus drugs from natural sources.
Assuntos
Antivirais , Vírus da Influenza A , NF-kappa B , Infecções por Orthomyxoviridae , PPAR gama , Replicação Viral , Animais , NF-kappa B/metabolismo , PPAR gama/metabolismo , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Vírus da Influenza A/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Trichoderma , Citocinas/metabolismo , Células A549 , Policetídeos/farmacologia , Cães , Influenza Humana/virologia , Influenza Humana/tratamento farmacológico , Células Madin Darby de Rim Canino , FemininoRESUMO
PURPOSE: This study aims to reveal the relationship between AMIGO2 and proliferation, migration and tumorigenicity of bladder cancer, and explore the potential molecular mechanisms. METHODS: The expression level of AMIGO2 is measured by qRT-PCR and immunohistochemistry (IHC). Stable AMIGO2 knockdown cell lines T24 and 5637 were established by lentivirus transfection. Cell Counting Kit (CCK-8 assay) was produced to determine cell proliferation, flow cytometry analysis was utilized to detect cell cycle, and wound healing assay was proceeded to test migration ability of bladder cancer cells. Xenograft mouse model was established for investigating the effect of AMIGO2 on tumor formation in vivo. The RNA Sequencing technology was applied to explore the underlying mechanisms. The expression level of PPAR-γ was measured by Western Blot. RESULTS: AMIGO2 was upregulated in bladder cancer cells and tissues. Inhibited expression of AMIGO2 suppresses cell proliferation and migration. Low AMIGO2 expression inhibited tumorigenicity of 5637 in nude mice. According to RNA-Seq and bioinformatics analysis, 917 DEGs were identified. The DEGs were mainly enriched in cell-cell adhesion, peroxisome proliferators-activated receptors (PPARs) signaling pathway and some other pathways. PPAR-γ is highly expressed in bladder cancer cell lines T24 and 5637, but when AMIGO2 is knocked down in T24 and 5637, the expression level of PPAR-γ is also decreased, and overexpression of PPAR-γ could reverse the suppression effect of cell proliferation and migration caused by the inhibition of AMIGO2. CONCLUSION: AMIGO2 is overexpressed in bladder cancer cells and tissues. Knockdown of AMIGO2 suppresses bladder cancer cell proliferation and migration. These processes might be regulated by PPAR-γ signaling pathway.
Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , PPAR gama , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Técnicas de Silenciamento de Genes , Camundongos Nus , Transdução de SinaisRESUMO
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Assuntos
Adipogenia , Epigênese Genética , MicroRNAs , Obesidade , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Adipogenia/genética , Animais , Adipócitos/metabolismo , Exossomos/metabolismo , Exossomos/genética , Regulação da Expressão GênicaRESUMO
Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.
Assuntos
Hemorragia Cerebral Intraventricular/metabolismo , Proteínas da Mielina/biossíntese , PPAR gama/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Animais Recém-Nascidos , Antiporters/deficiência , Antiporters/metabolismo , Hemorragia Cerebral Intraventricular/patologia , Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Recém-Nascido Prematuro , Microglia/metabolismo , Doenças Mitocondriais/metabolismo , Oligodendroglia/patologia , PPAR gama/agonistas , Transtornos Psicomotores/metabolismo , Coelhos , Rosiglitazona/farmacologia , Análise de Sequência de RNA/métodosRESUMO
Birds are sensitive to heavy metal pollution, and lead (Pb) contamination can negatively affect their liver and gut. Therefore, we used budgerigars to examine liver and gut toxicosis caused by Pb exposure in bird, and the possible toxic mechanisms. The findings showed Pb exposure increased liver weight and decreased body weight. Moreover, histopathological and immunofluorescence assay results demonstrated obvious liver damage and cell apoptosis increased in Pb- treated budgerigars. Quantitative polymerase chain reaction (qPCR) results also showed Pb caused an increase in apoptosis by inhibiting the PPAR-γ/PI3K/Akt pathway. The gut microbe analyses indicated Firmicutes, Proteobacteria, and Bacteroidetes were dominant microbial phyla, and Network analysis results shown Arthrobacter, Bradyrhizobium and Alloprevotella as the hubs of Modules I, II, and III, respectively. Phenylpropanoids and polyketides, Organoheterocyclic compounds, Organic oxygen compounds, and Organic nitrogen compounds were dominant metabolite superclasses. Tauroursodeoxycholic acid, taurochenodeoxycholic acid (sodium salt), and 2-[2-(5-bromo-2-pyridyl)diaz-1-enyl]-5-(diethylamino)phenol were significantly enriched in the Pb-treated group. It showed that 41 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues and 183 pathways differed between the Pb-treated and control budgerigars using microbial and metabolomic data. Moreover, orthogonal partial least-squares discrimination analysis (OPLS-DA) based on microbial and metabolite indicated distinct clusters in the Pb-treated and control groups. Additionally, the correlation analysis results indicated that a positive correlation for the Pb-treated and control groups between gut microbiota and metabolomic data, respectively. Furthermore, the microenvironment of the gut and liver were found to affect each other, and this study demonstrated heavy metal especially Pb may pose serious health risks to birds through the "gut-liver axis" too.
Assuntos
Disbiose , Microbioma Gastrointestinal , Intoxicação por Chumbo , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Disbiose/induzido quimicamente , Intoxicação por Chumbo/veterinária , Intoxicação por Chumbo/patologia , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/veterinária , Doenças Metabólicas/microbiologia , Chumbo/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologiaRESUMO
Epilepsy originates from unusual electrical rhythm within brain cells, causes seizures. Calotropis species have been utilized to treat a wide spectrum of ailments since antiquity. Despite chemical and biological investigations, there have been minimal studies on their anticonvulsant activity, and the molecular targets of this plant constituents are unexplored. This study aimed to investigate the plausible epileptic targets of Calotropis phytoconstituents through network pharmacology, and to evaluate their binding strength and stability with the identified targets. In detail, 125 phytoconstituents of the Calotropis plant (C. procera and C. gigantea) were assessed for their drug-likeness (DL), blood-brain-barrier (BBB) permeability and oral bioavailability (OB). Network analysis revealed that targets PTGS2 and PPAR-γ were ranked first and fourth, respectively, among the top ten hub genes significantly linked with antiepileptic drug targets. Additionally, docking, molecular dynamic (MD) simulation, and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) were employed to validate the compound-gene interactions. Docking studies suggested ergost-5-en-3-ol, stigmasterol and ß-sitosterol exhibit stronger binding affinity and favorable interactions than co-crystallized ligands with both the targets. Furthermore, both MD simulations and MM-PBSA calculations substantiated the docking results. Combined data revealed that Calotropis phytoconstituents ergost-5-en-3-ol, stigmasterol, and ß-sitosterol might be the best inhibitors of both PTGS2 and PPAR-γ.
Assuntos
Anticonvulsivantes , Calotropis , Ciclo-Oxigenase 2 , Epilepsia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia em Rede , PPAR gama , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Calotropis/química , Ciclo-Oxigenase 2/metabolismo , PPAR gama/metabolismo , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacosRESUMO
Lung cancer has become progressively widespread, posing a challenge to traditional chemotherapeutic drugs such as platinum compounds and paclitaxel (PTX) owing to growing resistance. Along with that, the chemotherapeutic drugs infer major side effects. The usage of natural compounds as chemosensitizers to boost the efficacy of these chemotherapeutic drugs and minimizing their toxicity is a plausible approach. In our investigation, we employed PTX as the standard chemotherapeutic agent and utilized chrysin-functionalized gold nanoparticles (CHR-AuNPs) to augment its cytotoxicity. Gold nanoparticles were chosen for their inherent cytotoxic properties and ability to enhance chrysin's bioavailability and solubility. Characterization of CHR-AuNP revealed spherical nanoparticles within the nano-size range (35-70 nm) with a stable negative zeta potential of -22 mV, confirmed by physicochemical analyses including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectral analysis, and visual observation of the wine-red coloration. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay cytotoxicity studies demonstrated CHR-AuNP's superior efficacy compared to CHR alone, with synergistic effects observed in combination with PTX, validated by Compusyn software. Morphological changes indicative of apoptosis were more pronounced with combined treatment, corroborated by acridine orange/ethidium bromide (AO/EtBr) staining and Annexin V assays. Furthermore, the combination treatment amplified reactive oxygen species (ROS) production and destabilized mitochondrial membrane potential, while altering the expression of pro-apoptotic and anti-apoptotic proteins. Exploring the mechanistic pathways, we found that the drugs upregulated PPAR-γ expression while suppressing Akt and overexpressing PTEN, thereby impeding the Wnt/ß-catenin pathway commonly dysregulated in lung cancer. This highlights the potential of low-dose combination therapy with PTX and CHR-AuNP as a promising strategy for addressing lung cancer's challenges.
RESUMO
OBJECTIVES: Osteoarthritis (OA) is the most common chronic joint degenerative disease. Herein, we investigated long non-coding RNA Opa-interacting protein 5-antisense transcript 1's (OIP5-AS1) in regulating mitophagy during OA. METHODS: RNA immunoprecipitation and RNA pull-down verified the relationship between molecules. Cell counting kit-8 detected cell viability. Enzyme-linked immunosorbent assay evaluated inflammatory cytokines secretion. Flow cytometry measured the contents of reactive oxygen species (ROS) and calcium. Immunofluorescence staining analysed TOMM20 and LC3B levels. JC-1 staining was adopted to measure mitochondrial membrane potential. The changes of mitophagy were analysed by transmission electron microscopy. RESULTS: Lipopolysaccharide (LPS) treatment contributed to the decrease of chondrocyte viability, and calcium level and inhibited mitochondrial membrane potential, while elevating the secretion of inflammatory factors, ROS, and TOMM20 expression. OIP5-AS1 overexpression inhibited LPS-induced chondrocyte injury and activated mitophagy. OIP5-AS1 upregulated the peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA level to regulate adenosine monophosphate-activated protein kinase (AMPK)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) signalling by interacting with FUS. PPAR-γ overexpression alleviated LPS-induced chondrocyte injury by activating AMPK/Akt/mTOR signalling. PPAR-γ knockdown reversed the promotion of OIP5-AS1 upregulation on mitophagy. CONCLUSIONS: OIP5-AS1 promotes PPAR-γ expression to activate the AMPK/Akt/mTOR signalling, thereby enhancing mitophagy and alleviating OA progression.