Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(7): 1046-1067, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352859

RESUMO

The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1, PS3, PP3, BS3, BP4, and BP7. However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. We utilized empirically derived splicing evidence to (1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, (2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and (3) exemplify methodology to calibrate splice prediction tools. We propose repurposing the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely, BP7 may be used to capture RNA results demonstrating no splicing impact for intronic and synonymous variants. We propose that the PS3/BS3 codes are applied only for well-established assays that measure functional impact not directly captured by RNA-splicing assays. We recommend the application of PS1 based on similarity of predicted RNA-splicing effects for a variant under assessment in comparison with a known pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA-assay evidence described aim to help standardize variant pathogenicity classification processes when interpreting splicing-based evidence.


Assuntos
Variação Genética , Genoma Humano , Humanos , Estados Unidos , Genômica/métodos , Alelos , Splicing de RNA/genética , Testes Genéticos/métodos
2.
Semin Cell Dev Biol ; 139: 84-92, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35370089

RESUMO

A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.


Assuntos
Doença de Alzheimer , Humanos , Animais , Camundongos , Doença de Alzheimer/genética , Encéfalo/metabolismo , Sinapses/metabolismo , Actinas/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
3.
Semin Cell Dev Biol ; 139: 111-120, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35431138

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive decline. Synaptic impairment is one of the first events to occur in the progression of this disease. Synaptic plasticity and cellular association of various plastic events have been shown to be affected in AD models. Nogo-A, a well-known axonal growth inhibitor with a recently discovered role as a plasticity suppressor, and its main receptor Nogo-66 receptor 1 (NGR1) have been found to be overexpressed in the hippocampus of Alzheimer's patients. However, the role of Nogo-A and its receptor in the pathology of AD is still widely unknown. In this work we set out to investigate whether Nogo-A is working as a plasticity suppressor in AD. Our results show that inhibition of the Nogo-A pathway via the Nogo-R antibody in an Alzheimer's mouse model, APP/PS1, leads to the restoration of both synaptic plasticity and associativity in a protein synthesis and NMDR-dependent manner. We also show that inhibition of the p75NTR pathway, which is strongly associated with NGR1, restores synaptic plasticity as well. Mechanistically, we propose that the restoration of synaptic plasticity in APP/PS1 via inhibition of the Nogo-A pathway is due to the modulation of the RhoA-ROCK2 pathway and increase in plasticity related proteins. Our study identifies Nogo-A as a plasticity suppressor in AD models hence targeting Nogo-A could be a promising strategy to understanding AD pathology.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteínas Nogo/metabolismo , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética
4.
J Biol Chem ; 300(2): 105619, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182004

RESUMO

Protein kinase-B (Akt) and the mechanistic target of rapamycin (mTOR) signaling pathways are implicated in Alzheimer's disease (AD) pathology. Akt/mTOR signaling pathways, activated by external inputs, enable new protein synthesis at the synapse and synaptic plasticity. The molecular mechanisms impeding new protein synthesis at the synapse in AD pathogenesis remain elusive. Here, we aimed to understand the molecular mechanisms prior to the manifestation of histopathological hallmarks by characterizing Akt1/mTOR signaling cascades and new protein synthesis in the hippocampus of WT and amyloid precursor protein/presenilin-1 (APP/PS1) male mice. Intriguingly, compared to those in WT mice, we found significant decreases in pAkt1, pGSK3ß, pmTOR, pS6 ribosomal protein, and p4E-BP1 levels in both post nuclear supernatant and synaptosomes isolated from the hippocampus of one-month-old (presymptomatic) APP/PS1 mice. In synaptoneurosomes prepared from the hippocampus of presymptomatic APP/PS1 mice, activity-dependent protein synthesis at the synapse was impaired and this deficit was sustained in young adults. In hippocampal neurons from C57BL/6 mice, downregulation of Akt1 precluded synaptic activity-dependent protein synthesis at the dendrites but not in the soma. In three-month-old APP/PS1 mice, Akt activator (SC79) administration restored deficits in memory recall and activity-dependent synaptic protein synthesis. C57BL/6 mice administered with an Akt inhibitor (MK2206) resulted in memory recall deficits compared to those treated with vehicle. We conclude that dysregulation of Akt1/mTOR and its downstream signaling molecules in the hippocampus contribute to memory recall deficits and loss of activity-dependent synaptic protein synthesis. In AD mice, however, Akt activation ameliorates deficits in memory recall and activity-dependent synaptic protein synthesis.


Assuntos
Doença de Alzheimer , Camundongos , Masculino , Animais , Doença de Alzheimer/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Modelos Animais de Doenças , Presenilina-1/metabolismo , Peptídeos beta-Amiloides/metabolismo
5.
EMBO J ; 40(24): e108662, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34825707

RESUMO

Chronic neuroinflammation is a pathogenic component of Alzheimer's disease (AD) that may limit the ability of the brain to clear amyloid deposits and cellular debris. Tight control of the immune system is therefore key to sustain the ability of the brain to repair itself during homeostasis and disease. The immune-cell checkpoint receptor/ligand pair PD-1/PD-L1, known for their inhibitory immune function, is expressed also in the brain. Here, we report upregulated expression of PD-L1 and PD-1 in astrocytes and microglia, respectively, surrounding amyloid plaques in AD patients and in the APP/PS1 AD mouse model. We observed juxtamembrane shedding of PD-L1 from astrocytes, which may mediate ectodomain signaling to PD-1-expressing microglia. Deletion of microglial PD-1 evoked an inflammatory response and compromised amyloid-ß peptide (Aß) uptake. APP/PS1 mice deficient for PD-1 exhibited increased deposition of Aß, reduced microglial Aß uptake, and decreased expression of the Aß receptor CD36 on microglia. Therefore, ineffective immune regulation by the PD-1/PD-L1 axis contributes to Aß plaque deposition during chronic neuroinflammation in AD.


Assuntos
Doença de Alzheimer/imunologia , Precursor de Proteína beta-Amiloide/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Regulação para Cima , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Astrócitos/metabolismo , Antígenos CD36/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Deleção de Genes , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Pessoa de Meia-Idade
6.
Glia ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137117

RESUMO

Alzheimer's disease (AD) is a major cause of progressive dementia characterized by memory loss and progressive neurocognitive dysfunction. However, the molecular mechanisms are not fully understood. To elucidate the molecular mechanism contributing to AD, an integrated analytical workflow was deployed to identify pivotal regulatory target within the RNA-sequencing (RNA-seq) data of the temporal cortex from AD patients. Soluble transforming growth factor beta receptor 3 (sTGFBR3) was identified as a critical target in AD, which was abnormally elevated in AD patients and AD mouse models. We then demonstrated that sTGFBR3 deficiency restored spatial learning and memory deficits in amyloid precursor protein (APP)/PS1 and streptozotocin (STZ)-induced neuronal impairment mice after its expression was disrupted by a lentiviral (LV) vector expressing shRNA. Mechanistically, sTGFBR3 deficiency augments TGF-ß signaling and suppressing the NF-κB pathway, thereby reduced the number of disease-associated microglia (DAMs), inhibited proinflammatory activity and increased the phagocytic activity of DAMs. Moreover, sTGFBR3 deficiency significantly mitigated acute neuroinflammation provoked by lipopolysaccharide (LPS) and alleviated neuronal dysfunction induced by STZ. Collectively, these results position sTGFBR3 as a promising candidate for therapeutic intervention in AD.

7.
Neurobiol Dis ; 199: 106570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885850

RESUMO

BACKGROUND: Hepatic lipoprotein receptor-related protein 1 (LRP-1) plays a central role in peripheral amyloid beta (Aß) clearance, but its importance in Alzheimer's disease (AD) pathology is understudied. Our previous work showed that intragastric alcohol feeding to C57BL/6 J mice reduced hepatic LRP-1 expression which correlated with significant AD-relevant brain changes. Herein, we examined the role of hepatic LRP-1 in AD pathogenesis in APP/PS1 AD mice using two approaches to modulate hepatic LRP-1, intragastric alcohol feeding to model chronic heavy drinking shown by us to reduce hepatic LRP-1, and hepato-specific LRP-1 silencing. METHODS: Eight-month-old male APP/PS1 mice were fed ethanol or control diet intragastrically for 5 weeks (n = 7-11/group). Brain and liver Aß were assessed using immunoassays. Three important mechanisms of brain amyloidosis were investigated: hepatic LRP-1 (major peripheral Aß regulator), blood-brain barrier (BBB) function (vascular Aß regulator), and microglia (major brain Aß regulator) using immunoassays. Spatial LRP-1 gene expression in the periportal versus pericentral hepatic regions was confirmed using NanoString GeoMx Digital Spatial Profiler. Further, hepatic LRP-1 was silenced by injecting LRP-1 microRNA delivered by the adeno-associated virus 8 (AAV8) and the hepato-specific thyroxine-binding globulin (TBG) promoter to 4-month-old male APP/PS1 mice (n = 6). Control male APP/PS1 mice received control AAV8 (n = 6). Spatial memory and locomotion were assessed 12 weeks after LRP-1 silencing using Y-maze and open-field test, respectively, and brain and liver Aß were measured. RESULTS: Alcohol feeding reduced plaque-associated microglia in APP/PS1 mice brains and increased aggregated Aß (p < 0.05) by ELISA and 6E10-positive Aß load by immunostaining (p < 0.05). Increased brain Aß corresponded with a significant downregulation of hepatic LRP-1 (p < 0.01) at the protein and transcript level, primarily in pericentral hepatocytes (zone 3) where alcohol-induced injury occurs. Hepato-specific LRP-1 silencing significantly increased brain Aß and locomotion hyperactivity (p < 0.05) in APP/PS1 mice. CONCLUSION: Chronic heavy alcohol intake reduced hepatic LRP-1 expression and increased brain Aß. The hepato-specific LRP-1 silencing similarly increased brain Aß which was associated with behavioral deficits in APP/PS1 mice. Collectively, our results suggest that hepatic LRP-1 is a key regulator of brain amyloidosis in alcohol-dependent AD.


Assuntos
Doença de Alzheimer , Fígado , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Doença de Alzheimer/metabolismo , Masculino , Camundongos , Fígado/metabolismo , Amiloidose/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Etanol/administração & dosagem , Modelos Animais de Doenças , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Neurobiol Dis ; 192: 106427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307366

RESUMO

Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aß)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aß and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.


Assuntos
Doença de Alzheimer , Camundongos , Feminino , Animais , Doença de Alzheimer/patologia , Fosforilação , Precursor de Proteína beta-Amiloide/genética , Camundongos Transgênicos , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
9.
Neurochem Res ; 49(10): 2888-2896, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39037560

RESUMO

With the aging global population, Alzheimer's disease (AD) has become a significant social and economic burden, necessitating the development of novel therapeutic strategies. This study investigates the therapeutic potential of nicotinamide mononucleotide (NMN) synbiotics, a combination of NMN, Lactiplantibacillus plantarum CGMCC 1.16089, and lactulose, in mitigating AD pathology. APP/PS1 mice were supplemented with NMN synbiotics and compared against control groups. The effects on amyloid-ß (Aß) deposition, intestinal histopathology, tight junction proteins, inflammatory cytokines, and reactive oxygen species (ROS) levels were assessed. NMN synbiotics intervention significantly reduced Aß deposition in the cerebral cortex and hippocampus by 67% and 60%, respectively. It also ameliorated histopathological changes in the colon, reducing crypt depth and restoring goblet cell numbers. The expression of tight junction proteins Claudin-1 and ZO-1 was significantly upregulated, enhancing intestinal barrier integrity. Furthermore, NMN synbiotics decreased the expression of proinflammatory cytokines IL-1ß, IL-6, and TNF-α, and reduced ROS levels, indicative of attenuated oxidative stress. The reduction in Aß deposition, enhancement of intestinal barrier function, decrease in neuroinflammation, and alleviation of oxidative stress suggest that NMN synbiotics present a promising therapeutic intervention for AD by modulating multiple pathological pathways. Further research is required to elucidate the precise mechanisms, particularly the role of the NLRP3 inflammasome pathway, which may offer a novel target for AD treatment.


Assuntos
Doença de Alzheimer , Simbióticos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Simbióticos/administração & dosagem , Mononucleotídeo de Nicotinamida/uso terapêutico , Mononucleotídeo de Nicotinamida/farmacologia , Camundongos Transgênicos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Citocinas/metabolismo
10.
Cell Mol Life Sci ; 80(7): 178, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37306762

RESUMO

Inhibition of phosphodiesterase 4D (PDE4D) enzymes has been investigated as therapeutic strategy to treat memory problems in Alzheimer's disease (AD). Although PDE4D inhibitors are effective in enhancing memory processes in rodents and humans, severe side effects may hamper their clinical use. PDE4D enzymes comprise different isoforms, which, when targeted specifically, can increase treatment efficacy and safety. The function of PDE4D isoforms in AD and in molecular memory processes per se has remained unresolved. Here, we report the upregulation of specific PDE4D isoforms in transgenic AD mice and hippocampal neurons exposed to amyloid-ß. Furthermore, by means of pharmacological inhibition and CRISPR-Cas9 knockdown, we show that the long-form PDE4D3, -D5, -D7, and -D9 isoforms regulate neuronal plasticity and convey resilience against amyloid-ß in vitro. These results indicate that isoform-specific, next to non-selective, PDE4D inhibition is efficient in promoting neuroplasticity in an AD context. Therapeutic effects of non-selective PDE4D inhibitors are likely achieved through actions on long isoforms. Future research should identify which long PDE4D isoforms should be specifically targeted in vivo to both improve treatment efficacy and reduce side effects.


Assuntos
Doença de Alzheimer , Diester Fosfórico Hidrolases , Humanos , Animais , Camundongos , Neuritos , Peptídeos beta-Amiloides , Neurônios , Camundongos Transgênicos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4
11.
J Integr Neurosci ; 23(7): 136, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39082293

RESUMO

BACKGROUND: Physical exercise has been shown to be beneficial for individuals with Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. METHODS: Six-month-old Amyloid precursor protein/Presenilin 1 (APP/PS1) transgenic (Tg) mice and wild-type (Wt) mice were randomly assigned to either a sedentary group (Tg-Sed, Wt-Sed) or an exercise group (Tg-Ex, Wt-Ex) undertaking a 12-week, moderate-intensity treadmill running program. Consequently, all mice were tested for memory function and amyloid ß (Aß) levels and phosphorylation of tau and protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3) were examined in tissues of both the cortex and hippocampus. RESULTS: Tg-Sed mice had severely impaired memory, higher levels of Aß, and increased phosphorylation of tau, GSK3α tyrosine279, and GSK3ß tyrosine216, but less phosphorylation of GSK3α serine21, GSK3ß serine9, and Akt serine473 in both tissues than Wt-Sed mice in respective tissues. Tg-Ex mice showed significant improvement in memory function along with lower levels of Aß and less phosphorylation of tau (both tissues), GSK3α tyrosine279 (both tissues), and GSK3ß tyrosine216 (hippocampus only), but increased phosphorylation of GSK3α serine21 (both tissues), GSK3ß serine9 (hippocampus only), and Akt serine473 (both tissues) compared with Tg-Sed mice in respective tissues. CONCLUSIONS: Moderate-intensity aerobic exercise is highly effective in improving memory function in 9-month-old APP/PS1 mice, most likely through differential modulation of GSK3α/ß phosphorylation in the cortex and hippocampus.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Córtex Cerebral , Glicogênio Sintase Quinase 3 beta , Quinase 3 da Glicogênio Sintase , Hipocampo , Condicionamento Físico Animal , Presenilina-1 , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Fosforilação , Condicionamento Físico Animal/fisiologia , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas tau/metabolismo
12.
Alzheimers Dement ; 20(3): 1637-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38055782

RESUMO

INTRODUCTION: Early-life stress (ES) increases the risk for Alzheimer's disease (AD). We and others have shown that ES aggravates amyloid-beta (Aß) pathology and promotes cognitive dysfunction in APP/PS1 mice, but underlying mechanisms remain unclear. METHODS: We studied how ES affects the hippocampal synaptic proteome in wild-type (WT) and APP/PS1 mice at early and late pathological stages, and validated hits using electron microscopy and immunofluorescence. RESULTS: The hippocampal synaptosomes of both ES-exposed WT and early-stage APP/PS1 mice showed a relative decrease in actin dynamics-related proteins and a relative increase in mitochondrial proteins. ES had minimal effects on older WT mice, while strongly affecting the synaptic proteome of advanced stage APP/PS1 mice, particularly the expression of astrocytic and mitochondrial proteins. DISCUSSION: Our data show that ES and amyloidosis share pathogenic pathways involving synaptic mitochondrial dysfunction and lipid metabolism, which may underlie the observed impact of ES on the trajectory of AD.


Assuntos
Experiências Adversas da Infância , Doença de Alzheimer , Amiloidose , Camundongos , Animais , Metabolismo dos Lipídeos , Camundongos Transgênicos , Proteoma , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Mitocôndrias , Proteínas Mitocondriais , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/metabolismo
13.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891849

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all pancreatic cancers and is the most fatal of all cancers. The treatment response from combination chemotherapies is far from satisfactory and surgery remains the mainstay of curative strategies. These challenges warrant identifying effective treatments for combating this deadly cancer. PDAC tumor progression is associated with the robust activation of the coagulation system. Notably, cancer-associated thrombosis (CAT) is a significant risk factor in PDAC. CAT is a concept whereby cancer cells promote thromboembolism, primarily venous thromboembolism (VTE). Of all cancer types, PDAC is associated with the highest risk of developing VTE. Hypoxia in a PDAC tumor microenvironment also elevates thrombotic risk. Direct oral anticoagulants (DOACs) or low-molecular-weight heparin (LMWH) are used only as thromboprophylaxis in PDAC. However, a precision medicine approach is recommended to determine the precise dose and duration of thromboprophylaxis in clinical setting.


Assuntos
Neoplasias Pancreáticas , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Anticoagulantes/uso terapêutico , Fatores de Risco , Animais , Microambiente Tumoral
14.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731839

RESUMO

CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aß generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.


Assuntos
Doença de Alzheimer , Lectinas Tipo C , Camundongos Transgênicos , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Neurônios/metabolismo , Camundongos , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica , Modelos Animais de Doenças
15.
J Neurochem ; 166(2): 215-232, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284938

RESUMO

Abnormal activation of the extrasynaptic N-methyl-d-aspartate receptor (NMDAR) contributes to the pathogenesis of Alzheimer's disease (AD). Ceftriaxone (Cef) can improve cognitive impairment by upregulating glutamate transporter-1 and promoting the glutamate-glutamine cycle in an AD mouse model. This study aimed to investigate the effects of Cef on synaptic plasticity and cognitive-behavioral impairment and to unravel the associated underlying mechanisms. We used an APPswe/PS1dE9 (APP/PS1) mouse model of AD in this study. Extrasynaptic components from hippocampal tissue homogenates were isolated using density gradient centrifugation. Western blot was performed to evaluate the expressions of extrasynaptic NMDAR and its downstream elements. Intracerebroventricular injections of adeno-associated virus (AAV)-striatal enriched tyrosine phosphatase 61 (STEP61 ) and AAV-STEP61 -shRNA were used to modulate the expressions of STEP61 and extrasynaptic NMDAR. Long-term potentiation (LTP) and Morris water maze (MWM) tests were performed to evaluate the synaptic plasticity and cognitive function. The results showed that the expressions of GluN2B and GluN2BTyr1472 in the extrasynaptic fraction were upregulated in AD mice. Cef treatment effectively prevented the upregulation of GluN2B and GluN2BTyr1472 expressions. It also prevented changes in the downstream signals of extrasynaptic NMDAR, including increased expressions of m-calpain and phosphorylated p38 MAPK in AD mice. Furthermore, STEP61 upregulation enhanced, whereas STEP61 downregulation reduced the Cef-induced inhibition of the expressions of GluN2B, GluN2BTyr1472 , and p38 MAPK in the AD mice. Similarly, STEP61 modulation affected Cef-induced improvements in induction of LTP and performance in MWM tests. In conclusion, Cef improved synaptic plasticity and cognitive behavioral impairment in APP/PS1 AD mice by inhibiting the overactivation of extrasynaptic NMDAR and STEP61 cleavage due to extrasynaptic NMDAR activation.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Modelos Animais de Doenças , Plasticidade Neuronal/fisiologia , Cognição , Camundongos Transgênicos , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Biochem Biophys Res Commun ; 681: 283-290, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801777

RESUMO

In recent years, it has become an acknowledged fact that noise exposure can lead to cognitive impairments, and researchers have shown increasing interest in this area. However, the detrimental impact of noise exposure on Alzheimer's disease (AD) animal models might be considerably greater than on ordinary model mice, yet the mechanisms by which noise exposure affects the hippocampus in these models have been scarcely investigated. This study we used 4D Label-free proteomics to identify distinctive differentially expressed proteins in the hippocampus of AD model mice following noise exposure. Among these proteins, the presence of Cathepsin S(CTSS) cannot be disregarded. Utilizing experimental techniques such as Western blot, immunofluorescence, and rt-qPCR, we confirmed the expression of CTSS in the hippocampus of APP/PS1 mice after noise exposure. Additionally, we examined downstream molecules including P53,BCL-2, BAX, and CASPASE3 using KEGG pathway analysis. The results indicated an elevation in CTSS expression, a reduction in the anti-apoptotic gene BCL-2, and an increase in the expression of BAX and cleaved CASPASE3. Based on these findings, we hypothesize that noise exposure potentially heightens apoptosis within the hippocampus through upregulating CTSS expression, subsequently posing a threat to AD model animals.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Regulação para Cima , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Hipocampo/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
17.
J Neuroinflammation ; 20(1): 153, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370108

RESUMO

BACKGROUND: The existence of an interconnected mechanism between cognitive disorders and periodontitis has been confirmed by mounting evidence. However, the role of age or sex differences in this mechanism has been less studied. This study aims to investigate sex and age differences in the characterization of periodontal bone tissue, immune state and cognitive function in amyloid precursor protein/presenilin 1(APP/PS1) murine model of Alzheimer's disease (AD). METHODS: Three- and twelve-month-old male and female APP/PS1 transgenic mice and wild-type (WT) littermates were used in this study. The Morris water maze (MWM) was used to assess cognitive function. The bone microarchitecture of the posterior maxillary alveolar bone was evaluated by microcomputed tomography (micro-CT). Pathological changes in periodontal bone tissue were observed by histological chemistry. The proportions of helper T cells1 (Th1), Th2, Th17 and regulatory T cells (Tregs) in the peripheral blood mononuclear cells (PBMCs) and brain samples were assessed by flow cytometry. RESULTS: The learning ability and spatial memory of 12-month-old APP/PS1 mice was severely damaged. The changes in cognitive function were only correlated with age and genotype, regardless of sex. The 12-month-old APP/PS1 female mice exhibited markedly periodontal bone degeneration, evidenced by the decreased bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and bone mineral density (BMD), and the increased trabecular separation (Tb.Sp). The altered periodontal bone microarchitecture was associated with genotype, age and females. The flow cytometry data showed the increased Th1 and Th17 cells and the decreased Th2 cells in the brain and PBMC samples of 12-month-old APP/PS1 mice, compared to age- and sex-matched WT mice. However, there was no statistical correlation between age or sex and this immune state. CONCLUSIONS: Our data emphasize that age and sex are important variables to consider in evaluating periodontal bone tissue of APP/PS1 mice, and the cognitive impairment is more related to age. In addition, immune dysregulation (Th1, Th2, and Th17 cells) was found in the brain tissue and PBMCs of APP/PS1 mice, but this alteration of immune state was not statistically correlated with sex or age.


Assuntos
Doença de Alzheimer , Reabsorção Óssea , Camundongos , Feminino , Masculino , Animais , Doença de Alzheimer/patologia , Leucócitos Mononucleares/patologia , Presenilina-1/genética , Modelos Animais de Doenças , Microtomografia por Raio-X , Caracteres Sexuais , Precursor de Proteína beta-Amiloide/genética , Cognição/fisiologia , Camundongos Transgênicos , Osso e Ossos/patologia , Reabsorção Óssea/complicações , Peptídeos beta-Amiloides
18.
J Neuroinflammation ; 20(1): 73, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918925

RESUMO

The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.


Assuntos
Doença de Alzheimer , Astrócitos , Camundongos , Humanos , Masculino , Animais , Idoso , Lactente , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
19.
J Neurosci Res ; 101(4): 524-540, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583371

RESUMO

The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-ß (Aß) transport/degradation, contributing to Aß homeostasis. Inadequate Aß metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aß scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aß uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aß-488 and uptake was evaluated at different time points using flow cytometry. Aß uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aß scavengers rhythmicity and that Aß clearance is a rhythmic process possibly regulated by the rhythmic expression of Aß scavengers.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Lactente , Doença de Alzheimer/metabolismo , Plexo Corióideo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Ritmo Circadiano , Camundongos Transgênicos , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças
20.
J Transl Med ; 21(1): 277, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095548

RESUMO

BACKGROUND: Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS: The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS: Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION: These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Camundongos , Animais , Farmacologia em Rede , RNA Ribossômico 16S , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA