Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Genet ; 54: 25-46, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32663049

RESUMO

Accurate DNA repair and replication are critical for genomic stability and cancer prevention. RAD51 and its gene family are key regulators of DNA fidelity through diverse roles in double-strand break repair, replication stress, and meiosis. RAD51 is an ATPase that forms a nucleoprotein filament on single-stranded DNA. RAD51 has the function of finding and invading homologous DNA sequences to enable accurate and timely DNA repair. Its paralogs, which arose from ancient gene duplications of RAD51, have evolved to regulate and promote RAD51 function. Underscoring its importance, misregulation of RAD51, and its paralogs, is associated with diseases such as cancer and Fanconi anemia. In this review, we focus on the mammalian RAD51 structure and function and highlight the use of model systems to enable mechanistic understanding of RAD51 cellular roles. We also discuss how misregulation of the RAD51 gene family members contributes to disease and consider new approaches to pharmacologically inhibit RAD51.


Assuntos
Rad51 Recombinase/genética , Animais , DNA/genética , Reparo do DNA/genética , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Humanos
2.
Trends Biochem Sci ; 48(1): 11-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798615

RESUMO

The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.


Assuntos
Nucleossomos , Proteômica , Animais , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Linhagem Celular
3.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101592

RESUMO

The epithelial Na+ channel (ENaC) emerged early in vertebrates and has played a role in Na+ and fluid homeostasis throughout vertebrate evolution. We previously showed that proteolytic activation of the channel evolved at the water-to-land transition of vertebrates. Sensitivity to extracellular Na+, known as Na+ self-inhibition, reduces ENaC function when Na+ concentrations are high and is a distinctive feature of the channel. A fourth ENaC subunit, δ, emerged in jawed fishes from an α subunit gene duplication. Here, we analyzed 849 α and δ subunit sequences and found that a key Asp in a postulated Na+ binding site was nearly always present in the α subunit, but frequently lost in the δ subunit (e.g. human). Analysis of site evolution and codon substitution rates provide evidence that the ancestral α subunit had the site and that purifying selection for the site relaxed in the δ subunit after its divergence from the α subunit, coinciding with a loss of δ subunit expression in renal tissues. We also show that the proposed Na+ binding site in the α subunit is a bona fide site by conferring novel function to channels comprising human δ subunits. Together, our findings provide evidence that ENaC Na+ self-inhibition improves fitness through its role in Na+ homeostasis in vertebrates.


Assuntos
Canais Epiteliais de Sódio , Evolução Molecular , Homeostase , Seleção Genética , Sódio , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Animais , Sódio/metabolismo , Humanos , Sítios de Ligação , Vertebrados/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Filogenia
4.
Cell Mol Life Sci ; 81(1): 286, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970652

RESUMO

Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics. The LIM-homeodomain transcription factors Lhx3, Lhx4, Isl1 and Isl2 promote the segregation and differentiation of spinal motor neurons and V2 interneurons. Based on their high sequence identity and their similar distribution, the Lhx3 and Lhx4 paralogs are considered to contribute similarly to these processes. However, the specific contribution of Lhx4 has never been studied. Here, we provide evidence that Lhx3 and Lhx4 are present in the same cell populations during spinal cord development. Similarly to Lhx3, Lhx4 can form multiproteic complexes with Isl1 or Isl2 and the nuclear LIM interactor NLI. Lhx4 can stimulate a V2-specific enhancer more efficiently than Lhx3 and surpasses Lhx3 in promoting the differentiation of V2a interneurons in chicken embryo electroporation experiments. Finally, Lhx4 inactivation in mice results in alterations of differentiation of the V2a subpopulation, but not of motor neuron production, suggesting that Lhx4 plays unique roles in V2a differentiation that are not compensated by the presence of Lhx3. Thus, Lhx4 could be the major LIM-HD factor involved in V2a interneuron differentiation during spinal cord development and should be considered for in vitro differentiation of spinal neuronal populations.


Assuntos
Diferenciação Celular , Interneurônios , Proteínas com Homeodomínio LIM , Medula Espinal , Fatores de Transcrição , Animais , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Interneurônios/metabolismo , Interneurônios/citologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/embriologia , Embrião de Galinha , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/citologia , Humanos , Regulação da Expressão Gênica no Desenvolvimento
5.
Proc Natl Acad Sci U S A ; 119(38): e2202727119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099300

RESUMO

Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Neoplasias Ovarianas , Rad51 Recombinase , Proteínas Supressoras de Tumor , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Mutação , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , Proteínas Supressoras de Tumor/genética
6.
BMC Bioinformatics ; 25(1): 163, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664637

RESUMO

BACKGROUND: Identifying orthologs continues to be an early and imperative step in genome analysis but remains a challenging problem. While synteny (conservation of gene order) has previously been used independently and in combination with other methods to identify orthologs, applying synteny in ortholog identification has yet to be automated in a user-friendly manner. This desire for automation and ease-of-use led us to develop OrthoRefine, a standalone program that uses synteny to refine ortholog identification. RESULTS: We developed OrthoRefine to improve the detection of orthologous genes by implementing a look-around window approach to detect synteny. We tested OrthoRefine in tandem with OrthoFinder, one of the most used software for identification of orthologs in recent years. We evaluated improvements provided by OrthoRefine in several bacterial and a eukaryotic dataset. OrthoRefine efficiently eliminates paralogs from orthologous groups detected by OrthoFinder. Using synteny increased specificity and functional ortholog identification; additionally, analysis of BLAST e-value, phylogenetics, and operon occurrence further supported using synteny for ortholog identification. A comparison of several window sizes suggested that smaller window sizes (eight genes) were generally the most suitable for identifying orthologs via synteny. However, larger windows (30 genes) performed better in datasets containing less closely related genomes. A typical run of OrthoRefine with ~ 10 bacterial genomes can be completed in a few minutes on a regular desktop PC. CONCLUSION: OrthoRefine is a simple-to-use, standalone tool that automates the application of synteny to improve ortholog detection. OrthoRefine is particularly efficient in eliminating paralogs from orthologous groups delineated by standard methods.


Assuntos
Software , Sintenia , Algoritmos , Bases de Dados Genéticas , Genômica/métodos
7.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675606

RESUMO

Following a duplication, the resulting paralogs tend to diverge. While mutation and natural selection can accelerate this process, they can also slow it. Here, we quantify the paralog homogenization that is caused by point mutations and interlocus gene conversion (IGC). Among 164 duplicated teleost genes, the median percentage of postduplication codon substitutions that arise from IGC rather than point mutation is estimated to be between 7% and 8%. By differentiating between the nonsynonymous codon substitutions that homogenize the protein sequences of paralogs and the nonhomogenizing nonsynonymous substitutions, we estimate the homogenizing nonsynonymous rates to be higher for 163 of the 164 teleost data sets as well as for all 14 data sets of duplicated yeast ribosomal protein-coding genes that we consider. For all 14 yeast data sets, the estimated homogenizing nonsynonymous rates exceed the synonymous rates.


Assuntos
Conversão Gênica , Magnoliopsida , Saccharomyces cerevisiae , Sequência de Aminoácidos , Genes Duplicados , Seleção Genética
8.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495316

RESUMO

Emerging evidence suggests that ribosome heterogeneity may have important functional consequences in the translation of specific mRNAs within different cell types and under various conditions. Ribosome heterogeneity comes in many forms, including post-translational modification of ribosome proteins (RPs), absence of specific RPs and inclusion of different RP paralogs. The Drosophila genome encodes two RpS5 paralogs: RpS5a and RpS5b. While RpS5a is ubiquitously expressed, RpS5b exhibits enriched expression in the reproductive system. Deletion of RpS5b results in female sterility marked by developmental arrest of egg chambers at stages 7-8, disruption of vitellogenesis and posterior follicle cell (PFC) hyperplasia. While transgenic rescue experiments suggest functional redundancy between RpS5a and RpS5b, molecular, biochemical and ribo-seq experiments indicate that RpS5b mutants display increased rRNA transcription and RP production, accompanied by increased protein synthesis. Loss of RpS5b results in microtubule-based defects and in mislocalization of Delta and Mindbomb1, leading to failure of Notch pathway activation in PFCs. Together, our results indicate that germ cell-specific expression of RpS5b promotes proper egg chamber development by ensuring the homeostasis of functional ribosomes.


Assuntos
Infertilidade/genética , Oogênese , Oogônios/metabolismo , Folículo Ovariano/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Oogônios/citologia , Folículo Ovariano/citologia , Transporte Proteico , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
9.
Oecologia ; 205(3-4): 571-586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012384

RESUMO

Identifying how the demands of migration are met at the level of gene expression is critical for understanding migratory physiology and can potentially reveal how migratory forms evolve from nonmigratory forms and vice versa. Among fishes, migration between freshwater and seawater (diadromy) requires considerable osmoregulatory adjustments, powered by the ion pump Na+, K+-ATPase (NKA) in the gills. Paralogs of the catalytic α-subunit of the pump (NKA α1a and α1b) are reciprocally upregulated in fresh- and seawater, a response known as paralog-switching, in gills of some diadromous species. We tested ontogenetic changes in NKA α-subunit paralog expression patterns, comparing pre-migrant and migrant alewife (Alosa pseudoharengus) sampled in their natal freshwater environment and after 24 h in seawater. In comparison to pre-migrants, juvenile out-migrants exhibited stronger paralog switching via greater downregulation of NKA α1a in seawater. We also tested microevolutionary changes in the response, exposing juvenile diadromous and landlocked alewife to freshwater (0 ppt) and seawater (30 ppt) for 2, 5, and 15 days. Diadromous and landlocked alewife exhibited salinity-dependent paralog switching, but levels of NKA α1b transcription were higher and the decrease in NKA α1a was greater after seawater exposure in diadromous alewife. Finally, we placed alewife α-subunit NKA paralogs in a macroevolutionary context. Molecular phylogenies show alewife paralogs originated independently of paralogs in salmonids and other teleosts. This study demonstrated that NKA paralog switching is tied to halohabitat profile and that duplications of the NKA gene provided the substrate for multiple, independent molecular solutions that support a diadromous life history.


Assuntos
Água do Mar , Animais , Migração Animal , Água Doce , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Peixes , Evolução Biológica , Brânquias
10.
Traffic ; 22(12): 412-424, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34533884

RESUMO

Endoplasmic reticulum (ER)-to-Golgi trafficking is an essential and highly conserved cellular process. The coat protein complex-II (COPII) arm of the trafficking machinery incorporates a wide array of cargo proteins into vesicles through direct or indirect interactions with Sec24, the principal subunit of the COPII coat. Approximately one-third of all mammalian proteins rely on the COPII-mediated secretory pathway for membrane insertion or secretion. There are four mammalian Sec24 paralogs and three yeast Sec24 paralogs with emerging evidence of paralog-specific cargo interaction motifs. Furthermore, individual paralogs also differ in their affinity for a subset of sorting motifs present on cargo proteins. As with many aspects of protein trafficking, we lack a systematic and thorough understanding of the interaction of Sec24 with cargoes. This systematic review focuses on the current knowledge of cargo binding to both yeast and mammalian Sec24 paralogs and their ER export motifs. The analyses show that Sec24 paralog specificity of cargo (and cargo receptors) range from exclusive paralog dependence or preference to partial redundancy. We also discuss how the Sec24 secretion system is hijacked by viral (eg, VSV-G, Hepatitis B envelope protein) and bacterial (eg, the enteropathogenic Escherichia coli type III secretion system effector NleA/EspI) pathogens.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Via Secretória
11.
Plant J ; 111(1): 117-133, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437852

RESUMO

Serine carboxypeptidase-like acyltransferases (SCPL-ATs) play a vital role in the diversification of plant metabolites. Galloylated flavan-3-ols highly accumulate in tea (Camellia sinensis), grape (Vitis vinifera), and persimmon (Diospyros kaki). To date, the biosynthetic mechanism of these compounds remains unknown. Herein, we report that two SCPL-AT paralogs are involved in galloylation of flavan-3-ols: CsSCPL4, which contains the conserved catalytic triad S-D-H, and CsSCPL5, which has the alternative triad T-D-Y. Integrated data from transgenic plants, recombinant enzymes, and gene mutations showed that CsSCPL4 is a catalytic acyltransferase, while CsSCPL5 is a non-catalytic companion paralog (NCCP). Co-expression of CsSCPL4 and CsSCPL5 is likely responsible for the galloylation. Furthermore, pull-down and co-immunoprecipitation assays showed that CsSCPL4 and CsSCPL5 interact, increasing protein stability and promoting post-translational processing. Moreover, phylogenetic analyses revealed that their homologs co-exist in galloylated flavan-3-ol- or hydrolyzable tannin-rich plant species. Enzymatic assays further revealed the necessity of co-expression of those homologs for acyltransferase activity. Evolution analysis revealed that the mutations of the CsSCPL5 catalytic residues may have taken place about 10 million years ago. These findings show that the co-expression of SCPL-ATs and their NCCPs contributes to the acylation of flavan-3-ols in the plant kingdom.


Assuntos
Diospyros , Vitis , Acilação , Aciltransferases/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Flavonoides , Filogenia , Plantas/metabolismo , Polifenóis , Vitis/metabolismo
12.
Plant J ; 111(4): 1081-1095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748398

RESUMO

De novo genes are derived from non-coding sequences, and they can play essential roles in organisms. Cultivated peanut (Arachis hypogaea) is a major oil and protein crop derived from a cross between Arachis duranensis and Arachis ipaensis. However, few de novo genes have been documented in Arachis. Here, we identified 381 de novo genes in A. hypogaea cv. Tifrunner based on comparison with five closely related Arachis species. There are distinct differences in gene expression patterns and gene structures between conserved and de novo genes. The identified de novo genes originated from ancestral sequence regions associated with metabolic and biosynthetic processes, and they were subsequently integrated into existing regulatory networks. De novo paralogs and homoeologs were identified in A. hypogaea cv. Tifrunner. De novo paralogs and homoeologs with conserved expression have mismatching cis-acting elements under normal growth conditions. De novo genes potentially have pluripotent functions in responses to biotic stresses as well as in growth and development based on quantitative trait locus data. This work provides a foundation for future research examining gene birth processes and gene function in Arachis and related taxa.


Assuntos
Arachis , Evolução Molecular , Arachis/genética , Arachis/metabolismo , Locos de Características Quantitativas/genética
13.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35021222

RESUMO

Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the "tip of the iceberg" since thousands of sequences remain uncharacterized in this enzyme family alone.


Assuntos
Magnoliopsida , Metiltransferases , Proteínas de Plantas , Magnoliopsida/classificação , Magnoliopsida/enzimologia , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Especificidade por Substrato
14.
BMC Plant Biol ; 23(1): 145, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927311

RESUMO

BACKGROUND: MYB transcription factors are widely distributed in the plant kingdom and play key roles in regulatory networks governing plant metabolism and biochemical and physiological processes. RESULTS: Here, we first determined the R2R3-MYB genes in five Euphorbiaceae genomes. The three Trp (W) residues from the first MYB domain (R2) were absolutely conserved, whereas the first W residue from the second MYB domain (R3) was preferentially mutated. The R2R3-MYBs were clustered into 48 functional subfamilies, of which 34 had both R2R3-MYBs of Euphorbiaceae species and AtMYBs, and four contained only Euphorbiaceae R2R3-MYBs. The whole-genome duplication (WGD) and/or segmental duplication (SD) played key roles in the expansion of the R2R3-MYB family. Unlike paralogous R2R3-MYB family members, orthologous R2R3-MYB members contained a higher selective pressure and were subject to a constrained evolutionary rate. VfMYB36 was specifically expressed in fruit, and its trend was consistent with the change in oil content, indicating that it might be involved in oil biosynthesis. Overexpression experiments showed that VfMYB36 could significantly provide linolenic acid (C18:3) content, which eventually led to a significant increase in oil content. CONCLUSION: Our study first provides insight into understanding the evolution and expression of R2R3-MYBs in Euphorbiaceae species, and also provides a target for the production of biomass diesel and a convenient way for breeding germplasm resources with high linolenic acid content in the future.


Assuntos
Genes myb , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Ácido alfa-Linolênico , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Óleos de Plantas , Filogenia , Regulação da Expressão Gênica de Plantas
15.
New Phytol ; 240(4): 1381-1389, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724752

RESUMO

Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed 'a geneticist's nightmare': It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies - the next frontier in plant functional studies.


Assuntos
Duplicação Gênica , Saccharomyces cerevisiae , Genótipo , Fenótipo , Saccharomyces cerevisiae/genética , Evolução Molecular , Genes Duplicados , Modelos Genéticos
16.
J Evol Biol ; 36(10): 1375-1392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667674

RESUMO

Gene paralogs are copies of an ancestral gene that appear after gene or full genome duplication. When two sister gene copies are maintained in the genome, redundancy may release certain evolutionary pressures, allowing one of them to access novel functions. Here, we focused our study on gene paralogs on the evolutionary history of the three polypyrimidine tract binding protein genes (PTBP) and their concurrent evolution of differential codon usage preferences (CUPrefs) in vertebrate species. PTBP1-3 show high identity at the amino acid level (up to 80%) but display strongly different nucleotide composition, divergent CUPrefs and, in humans and in many other vertebrates, distinct tissue-specific expression levels. Our phylogenetic inference results show that the duplication events leading to the three extant PTBP1-3 lineages predate the basal diversification within vertebrates, and genomic context analysis illustrates that local synteny has been well preserved over time for the three paralogs. We identify a distinct evolutionary pattern towards GC3-enriching substitutions in PTBP1, concurrent with enrichment in frequently used codons and with a tissue-wide expression. In contrast, PTBP2s are enriched in AT-ending, rare codons, and display tissue-restricted expression. As a result of this substitution trend, CUPrefs sharply differ between mammalian PTBP1s and the rest of PTBPs. Genomic context analysis suggests that GC3-rich nucleotide composition in PTBP1s is driven by local substitution processes, while the evidence in this direction is thinner for PTBP2-3. An actual lack of co-variation between the observed GC composition of PTBP2-3 and that of the surrounding non-coding genomic environment would raise an interrogation on the origin of CUPrefs, warranting further research on a putative tissue-specific translational selection. Finally, we communicate an intriguing trend for the use of the UUG-Leu codon, which matches the trends of AT-ending codons. Our results are compatible with a scenario in which a combination of directional mutation-selection processes would have differentially shaped CUPrefs of PTBPs in vertebrates: the observed GC-enrichment of PTBP1 in placental mammals may be linked to genomic location and to the strong and broad tissue-expression, while AT-enrichment of PTBP2 and PTBP3 would be associated with rare CUPrefs and thus, possibly to specialized spatio-temporal expression. Our interpretation is coherent with a gene subfunctionalisation process by differential expression regulation associated with the evolution of specific CUPrefs.

17.
Mol Biol Rep ; 50(2): 1931-1941, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36396768

RESUMO

MAGOH and MAGOHB are paralog proteins that can substitute each other in the exon junction complex (EJC). The EJC is formed of core components EIF4A3, RBM8A, and MAGOH/MAGOHB. As a part of the EJC, MAGOH proteins are required for mRNA splicing, export, translation and nonsense-mediated mRNA decay (NMD). MAGOH is also essential for embryonic development and normal cellular functioning. The haploinsufficiency of MAGOH results in disorders such as microcephaly and cancer. The present review discusses the discovery of MAGOH, its paralog MAGOHB, their roles in cellular function as part of the EJC, and other cellular roles that are not directly associated with mRNA processing. We also discuss how MAGOH haploinsufficiency in cancer cells can be exploited to develop a novel targeted cancer treatment.


Assuntos
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Éxons , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Splicing de RNA , Neoplasias/genética , RNA Mensageiro/metabolismo
18.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511029

RESUMO

Megalurothrips usitatus (Bagnall) is a destructive pest of legumes, such as cowpea. The biology, population dynamics and control strategies of this pest have been well studied. However, the lack of a high-quality reference genome for M. usitatus has hindered the understanding of key biological questions, such as the mechanism of adaptation to feed preferentially on high-protein host plants and the resistance to proteinase inhibitors (PIs). In this study, we generated a high-resolution chromosome-level reference genome assembly (247.82 Mb, 16 chromosomes) of M. usitatus by combining Oxford Nanopore Technologies (ONT) and Hi-C sequencing. The genome assembly showed higher proportions of GC and repeat content compared to other Thripinae species. Genome annotation revealed 18,624 protein-coding genes, including 4613 paralogs that were preferentially located in TE-rich regions. GO and KEGG enrichment analyses of the paralogs revealed significant enrichment in digestion-related genes. Genome-wide identification uncovered 506 putative digestion-related enzymes; of those, proteases, especially their subgroup serine proteases (SPs), are significantly enriched in paralogs. We hypothesized that the diversity and expansion of the digestion-related genes, especially SPs, could be driven by mobile elements (TEs), which promote the adaptive evolution of M. usitatus to high-protein host plants with high serine protease inhibitors (SPIs). The current study provides a valuable genomic resource for understanding the genetic variation among different pest species adapting to different plant hosts.


Assuntos
Fabaceae , Tisanópteros , Animais , Tisanópteros/genética , Proteólise , Cromossomos , Fabaceae/genética , Serina Proteases/genética , Flores , Filogenia
19.
Mol Plant Microbe Interact ; 35(7): 604-615, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35322688

RESUMO

The general stress response (GSR) enables bacteria to sense and overcome a variety of environmental stresses. In alphaproteobacteria, stress-perceiving histidine kinases of the HWE and HisKA_2 families trigger a signaling cascade that leads to phosphorylation of the response regulator PhyR and, consequently, to activation of the GSR σ factor σEcfG. In the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens, PhyR and σEcfG are crucial for tolerance against a variety of stresses under free-living conditions and also for efficient infection of its symbiotic host soybean. However, the molecular players involved in stress perception and activation of the GSR remained largely unknown. In this work, we first showed that a mutant variant of PhyR where the conserved phosphorylatable aspartate residue D194 was replaced by alanine (PhyRD194A) failed to complement the ΔphyR mutant in symbiosis, confirming that PhyR acts as a response regulator. To identify the PhyR-activating kinases in the nitrogen-fixing symbiont, we constructed in-frame deletion mutants lacking single, distinct combinations, or all of the 11 predicted HWE and HisKA_2 kinases, which we named HRXXN histidine kinases HhkA through HhkK. Phenotypic analysis of the mutants and complemented derivatives identified two functionally redundant kinases, HhkA and HhkE, that are required for nodulation competitiveness and during initiation of symbiosis. Using σEcfG-activity reporter strains, we further showed that both HhkA and HhkE activate the GSR in free-living cells exposed to salt and hyperosmotic stress. In conclusion, our data suggest that HhkA and HhkE trigger GSR activation in response to osmotically stressful conditions which B. diazoefficiens encounters during soybean host infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Bradyrhizobium , Histidina , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Nitrogênio , Fosfotransferases , Cloreto de Sódio , Glycine max/microbiologia , Estresse Fisiológico , Simbiose
20.
Mol Biol Evol ; 38(4): 1614-1626, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33169790

RESUMO

How gene function evolves is a central question of evolutionary biology. It can be investigated by comparing functional genomics results between species and between genes. Most comparative studies of functional genomics have used pairwise comparisons. Yet it has been shown that this can provide biased results, as genes, like species, are phylogenetically related. Phylogenetic comparative methods should be used to correct for this, but they depend on strong assumptions, including unbiased tree estimates relative to the hypothesis being tested. Such methods have recently been used to test the "ortholog conjecture," the hypothesis that functional evolution is faster in paralogs than in orthologs. Although pairwise comparisons of tissue specificity (τ) provided support for the ortholog conjecture, phylogenetic independent contrasts did not. Our reanalysis on the same gene trees identified problems with the time calibration of duplication nodes. We find that the gene trees used suffer from important biases, due to the inclusion of trees with no duplication nodes, to the relative age of speciations and duplications, to systematic differences in branch lengths, and to non-Brownian motion of tissue specificity on many trees. We find that incorrect implementation of phylogenetic method in empirical gene trees with duplications can be problematic. Controlling for biases allows successful use of phylogenetic methods to study the evolution of gene function and provides some support for the ortholog conjecture using three different phylogenetic approaches.


Assuntos
Especiação Genética , Técnicas Genéticas , Filogenia , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA