Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791369

RESUMO

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Assuntos
Toxinas Bacterianas , Interleucina-8 , Infecções por Pasteurella , Pasteurella multocida , Animais , Apoptose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Caspase 8/metabolismo , Caspase 8/genética , Linhagem Celular , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Interleucina-8/metabolismo , Interleucina-8/genética , Pasteurella multocida/genética , Suínos , Infecções por Pasteurella/metabolismo , Infecções por Pasteurella/veterinária
2.
Vet Res ; 54(1): 17, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864537

RESUMO

Streptococcus suis (S. suis) and Pasteurella multocida (P. multocida) are pathogens that can cause zoonotic diseases. P. multocida toxin (PMT) is an important virulence factor that causes atrophic rhinitis in pigs. Suilysin (Sly) is an extracellular protein of S. suis and has been shown to be a potential adjuvant. Previous studies have indicated that subunit vaccines containing several fragments of PMT as antigens are safer than traditional inactivated or live-attenuated vaccines. However, protein-based vaccines need strong adjuvants to enhance their immunogenicity. In this study, recombinant PMT-NC (rPMT-NC) protein antigen was formulated with either recombinant Sly (rSly) or CpG oligodeoxynucleotides (CpG) as the adjuvant. The immune responses elicited by these vaccines and the protective efficacy after challenge with live P. multocida were evaluated in piglets. In the dose-dependent test, piglets immunized with the low dose (100 µg) of rSly had increased antigen-specific total IgG, interferon (IFN)-γ gene expression, and CD4+ and CD8+ T-cell populations. Compared to piglets in the commercial (Al-gel) adjuvant and the control groups (p < 0.05), piglets in the biological adjuvant groups showed significantly reduced turbinate atrophy, nasal distortion, and lung lesion scores after challenge with P. multocida serotype A. Vaccines containing rSly or CpG adjuvant enhanced humoral and cellular immune responses and protection against P. multocida. This combination of a protein-based antigen formulated with a biological adjuvant showed synergistic and protective effects against atrophic rhinitis and has potential to be developed as part of a bivalent vaccine.


Assuntos
Pasteurella multocida , Rinite Atrófica , Doenças dos Suínos , Animais , Suínos , Rinite Atrófica/veterinária , Adjuvantes Imunológicos/farmacologia , Vacinas de Subunidades Antigênicas , Interferons , Doenças dos Suínos/prevenção & controle
3.
Cell Microbiol ; 22(7): e13213, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353188

RESUMO

Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras-GTPases, certain virulence factors of Gram negative bacteria, Rho-GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G-proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four-helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.


Assuntos
Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Membrana Celular/efeitos dos fármacos , Citoplasma/microbiologia , Animais , Proteínas de Bactérias , Toxinas Botulínicas , Domínio Catalítico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Legionella pneumophila , Metaloendopeptidases , Neurotoxinas , Ácidos Fosfatídicos , Fosfatidilserinas/metabolismo , Toxina Tetânica , Fatores de Virulência/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326543

RESUMO

Many Pasteurella multocida strains are carried as commensals, while some cause disease in animals and humans. Some type D strains cause atrophic rhinitis in pigs, where the causative agent is known to be the Pasteurella multocida toxin (PMT). PMT activates three families of G-proteins-Gq/11, G12/13, and Gi/o-leading to cellular mitogenesis and other sequelae. The effects of PMT on whole animals in vivo have been investigated previously, but only at the level of organ-specific pathogenesis. We report here the first study to screen all the organs targeted by the toxin by using the QE antibody that recognizes only PMT-modified G-proteins. Under our experimental conditions, short-term treatment of PMT is shown to have multiple in vivo targets, demonstrating G-alpha protein modification, stimulation of proliferation markers and expression of active ß-catenin in a tissue- and cell-specific manner. This highlights the usefulness of PMT as an important tool for dissecting the specific roles of different G-alpha proteins in vivo.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Proliferação de Células/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Pasteurella multocida/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo , beta Catenina/metabolismo
5.
Front Microbiol ; 15: 1459124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257615

RESUMO

Pasteurella multocida toxin (PMT) is one of the most important virulence factors of Pasteurella multocida type D. Pasteurella multocida infection has caused enormous economic losses in the pig farming industry. Although it is well known that this bacterial infection causes progressive atrophic rhinitis, its effects on other organ tissues in pigs are unclear. In this study, PMT was expressed and purified, and the cytotoxic effects of PMT on four types of swine cells, LLC-PK1, PAM, IPEC, and ST, were investigated. LLC-PK1 exhibited the highest sensitivity to the cytotoxic effects of PMT. Our studies revealed that a PMT concentration of 0.1 µg/kg can lead to weight loss, whereas a PMT concentration of 0.5 µg/kg can lead to death in mice. PMT causes damage to the intestines, kidneys, lungs, livers, and spleens of mice. Furthermore, PMT caused acute death in pigs at treatment concentrations greater than 5 µg/kg; at PMT concentration of 2.5 µg/kg, weight loss occurred until death. PMT mainly caused damage to the hearts, lungs, livers, spleens and kidneys of pigs. The organ coefficient showed that damage to the heart and kidneys was the most severe and caused the renal pelvis and renal pyramid to dissolve and become cavitated. Pathology revealed hemorrhage in the lungs, liver, and spleen, and the kidneys were swollen and vacuolated, which was consistent with the damaged target organs in the mice. In conclusion, these findings demonstrate that PMT is extremely toxic in vitro and in vivo, causing damage to various organs of the body, especially the kidneys and lungs. This study provides a theoretical basis for the in-depth exploration of the cytotoxic effects of PMT on target organs.

6.
Vet Microbiol ; 285: 109848, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722207

RESUMO

Interferon-γ (IFN-γ) is a pleiotropic cytokine that regulates diverse biological functions, including modulation of inflammatory response and innate and adaptive immunity. In our study, we found that IFN-γ plays an important role in the regulation of Pasteurella multocida toxin-associated pneumonia. In work described here, we demonstrated that rPMT induced a lethal pneumonia in WT mice and the severity of the pneumonia was substantially alleviated in IFN-γ-deficient mice, IFN-γ deficiency significantly elevated the survival rate and reduced the pathological lesions of the lungs after rPMT challenged. Notably, IFN-γ deficiency significantly decreased myeloperoxidase (MPO) expression abundance in the lung tissue, and the MPO was mainly expressed in the lung tissue injury region of WT mice. More importantly, IFN-γ deficiency impaired the activation of PANoptosis specific markers, including the caspase 3, GSDMD, and MLKL, and reduced the expression of IL-1ß. Cumulatively, this study demonstrates that IFN-γ promotes PANoptosis in PMT induced pneumonia in mice, providing a basis for studying the pathogenic mechanism of PMT.


Assuntos
Toxinas Bacterianas , Infecções por Pasteurella , Pasteurella multocida , Pneumonia , Camundongos , Animais , Interferon gama/genética , Proteínas de Bactérias/metabolismo , Pneumonia/veterinária , Infecções por Pasteurella/veterinária
7.
Vaccine ; 41(14): 2387-2396, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36872144

RESUMO

Pasteurella multocida (P. multocida) infection frequently results in porcine atrophic rhinitis and swine plague, leading to large economic losses for the swine industry worldwide. P. multocida toxin (PMT, 146 kDa) is a highly virulent key virulence factor that plays a vital role in causing lung and turbinate lesions. This study developed a multi-epitope recombinant antigen of PMT (rPMT) that showed excellent immunogenicity and protection in a mouse model. Using bioinformatics to analyse the dominant epitopes of PMT, we constructed and synthesized rPMT containing 10 B-cell epitopes, 8 peptides with multiple B-cell epitopes and 13 T-cell epitopes of PMT and a rpmt gene (1,974 bp) with multiple epitopes. The rPMT protein (97 kDa) was soluble and contained a GST tag protein. Immunization of mice with rPMT stimulated significantly elevated serum IgG titres and splenocyte proliferation, and serum IFN-γ and IL-12 were upregulated by 5-fold and 1.6-fold, respectively, but IL-4 was not. Furthermore, the rPMT immunization group exhibited alleviated lung tissue lesions and a significantly decreased degree of neutrophil infiltration compared with the control groups post-challenge. In the rPMT vaccination group, 57.1% (8/14) of the mice survived the challenge, similar to the bacterin HN06 group, while all the mice in the control groups succumbed to the challenge. Thus, rPMT could be a suitable candidate antigen for developing a subunit vaccine against toxigenic P. multocida infection.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Suínos , Pasteurella multocida/genética , Epitopos de Linfócito B/genética , Proteínas de Bactérias/genética , Infecções por Pasteurella/prevenção & controle , Vacinação , Imunização
8.
Res Vet Sci ; 151: 175-183, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041311

RESUMO

Suilysin (Sly) from Streptococcus suis has been shown to elicit strong immune responses and may act as a vaccine adjuvant. In the present study, we tested the adjuvant effect of Sly using an engineered Pasteurella multocida toxin, rPMT-NC, as the antigen. The antigen was also formulated with other conventional adjuvants (aluminum hydroxide, water-in-oil-in-water) for comparison. The efficacy of these vaccine formulations were evaluated in mice. The optimal dosage of purified rSly for enhancing immune responses in mice was first determined to be 40 µg/ml based on significantly (p < 0.05) increased serum antibody titers, expression of cytokines, including interleukin (IL)-4, IL-12, and interferon (IFN)-γ and the survival rate after challenge with P. multocida. Mice immunized with rPMT-NC + rSly had augmented antibody production and cellular immunity compare to those immunized with rPMT-NC plus other adjuvants. In addition, the survival rate of mice immunized with rPMT-NC + rSly was the highest (70% v.s. 30% of mice immunized with rPMT-NC alone) among all groups. In conclusion, rSly has the potential to be used as a biological adjuvant to enhance immune responses and protective efficacy of protein-based vaccines.


Assuntos
Pasteurella multocida , Streptococcus suis , Adjuvantes Imunológicos/farmacologia , Animais , Proteínas de Bactérias , Toxinas Bacterianas , Proteínas Hemolisinas , Camundongos , Água
9.
Vaccine ; 40(27): 3771-3780, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35599036

RESUMO

Dermonecrotic toxin (DNT) is an important bacterial virulence factor produced by the zoonotic pathogens Bordetella bronchiseptica and Pasteurella multocida. This study aims to explore the possibility of expressing different fragments of P. multocida toxin (PMT) in the chromosome of attenuated B. bronchiseptica to generate single-component mucosal vaccine candidates. To achieve this, a 954-bp fragment (basepairs 301 âˆ¼ 1254) of the B. bronchiseptica aroA gene was replaced with an N-terminal, 930-bp fragment (basepairs 1-930; PMTN) or a C-terminal, 900-bp fragment (base pairs 2959 âˆ¼ 3858; PMTC) of the PMT encoding gene toxA. The resulting strains, denoted as Bb-PMTN or Bb-PMTC, expressed PMTN and PMTC, as evidenced by ELISA using polyclonal against full-length of PMT. Phenotypical analyses revealed that Bb-PMTN and Bb-PMTC grew much slower than wild type strains in tryptic soy broth. These strains also displayed significantly decreased 161-fold-virulence compared to the wildtype strains in mouse models. Intranasal immunization of Bb-PMTN and Bb-PMTC in mice induced high levels of antibodies against B. bronchiseptica and PMT, as well as IFN-γ and IL-10 in mouse sera, and most importantly, high titers of sIgA in mouse lungs. Vaccination with these two engineering strains provided 100% protection of mice against lethal challenge with B. bronchiseptica and 80%∼100% protection against lethal challenge with PMT, with Bb-PMTN exhibiting 1.25-fold greater immunogenic efficacy over Bb-PMTC. This study highlights the use of B. bronchiseptica attenuated strains as live mucosal vectors to deliver heterologous antigens.


Assuntos
Toxinas Bacterianas , Infecções por Bordetella , Bordetella bronchiseptica , Infecções por Pasteurella , Pasteurella multocida , Animais , Proteínas de Bactérias , Toxinas Bacterianas/genética , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/genética , Camundongos , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/genética , Vacinas Atenuadas
10.
Res Vet Sci ; 137: 138-143, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33975192

RESUMO

Pasteurella multocida (P. multocida) infects the swine respiratory tract and mainly causes atrophic rhinitis (AR). Recently, many commercially inactivated and subunit vaccines have been used as preventive strategies. However, the best antigenic protein portion has not been selected, and the aluminum gel was used as the adjuvant, which may not induce full protection. P. multocida toxin (PMT) is the major virulence factor responsible for AR. PMT is a monomeric 146 kDa protein (approximately 1285 amino acids) encoded by the tox A gene. In this study, we expressed different fragments of recombinant PMT proteins, combined them with a water-in-oil-in-water adjuvant, and evaluated mice's immune response. The results indicated that the rPMT-C-immunized group showed significantly higher levels (p < 0.05) of IgG, IgG2a antibody and interferon-γ, IL-12 cytokine expression than other groups. Furthermore, vaccination with rPMT-C recombinant protein can provide homologous and heterologous protection against P. multocida challenge. In conclusion, our approach may be feasible for developing an effective subunit vaccine against atrophic rhinitis with a cost-down simple ingredient.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Infecções por Pasteurella/veterinária , Pasteurella multocida , Rinite Atrófica/prevenção & controle , Adjuvantes Imunológicos , Animais , Imunização , Camundongos , Camundongos Endogâmicos ICR , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/prevenção & controle , Rinite Atrófica/imunologia , Vacinas Sintéticas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA