Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.893
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(4): 960-975.e15, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32763155

RESUMO

Parental behavior is pervasive throughout the animal kingdom and essential for species survival. However, the relative contribution of the father to offspring care differs markedly across animals, even between related species. The mechanisms that organize and control paternal behavior remain poorly understood. Using Sprague-Dawley rats and C57BL/6 mice, two species at opposite ends of the paternal spectrum, we identified that distinct electrical oscillation patterns in neuroendocrine dopamine neurons link to a chain of low dopamine release, high circulating prolactin, prolactin receptor-dependent activation of medial preoptic area galanin neurons, and paternal care behavior in male mice. In rats, the same parameters exhibit inverse profiles. Optogenetic manipulation of these rhythms in mice dramatically shifted serum prolactin and paternal behavior, whereas injecting prolactin into non-paternal rat sires triggered expression of parental care. These findings identify a frequency-tuned brain-endocrine-brain circuit that can act as a gain control system determining a species' parental strategy.


Assuntos
Dopamina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Comportamento Paterno/fisiologia , Animais , Encéfalo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Prolactina/sangue , Ratos , Ratos Sprague-Dawley , Receptores da Prolactina/deficiência , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
2.
Mol Cell ; 78(3): 445-458.e6, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32197065

RESUMO

Paternal dietary conditions may contribute to metabolic disorders in offspring. We have analyzed the role of the stress-dependent epigenetic regulator cyclic AMP-dependent transcription factor 7 (ATF7) in paternal low-protein diet (pLPD)-induced gene expression changes in mouse liver. Atf7+/- mutations cause an offspring phenotype similar to that caused by pLPD, and the effect of pLPD almost vanished when paternal Atf7+/- mice were used. ATF7 binds to the promoter regions of ∼2,300 genes, including cholesterol biosynthesis-related and tRNA genes in testicular germ cells (TGCs). LPD induces ATF7 phosphorylation by p38 via reactive oxygen species (ROS) in TGCs. This leads to the release of ATF7 and a decrease in histone H3K9 dimethylation (H3K9me2) on its target genes. These epigenetic changes are maintained and induce expression of some tRNA fragments in spermatozoa. These results indicate that LPD-induced and ATF7-dependent epigenetic changes in TGCs play an important role in paternal diet-induced metabolic reprograming in offspring.


Assuntos
Fatores Ativadores da Transcrição/genética , Dieta com Restrição de Proteínas , Epigênese Genética , Fígado/fisiologia , Espermatozoides/fisiologia , Fatores Ativadores da Transcrição/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Fosforilação , Regiões Promotoras Genéticas
3.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35980365

RESUMO

In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.


Assuntos
Centríolos , Centro Organizador dos Microtúbulos , Animais , Centríolos/metabolismo , Centrossomo/metabolismo , Masculino , Centro Organizador dos Microtúbulos/metabolismo , Sêmen/metabolismo , Tubulina (Proteína)/metabolismo , Peixe-Zebra/metabolismo
4.
Hum Genomics ; 18(1): 32, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532526

RESUMO

BACKGROUND: Advanced paternal age (APA) is associated with adverse outcomes to offspring health, including increased risk for neurodevelopmental disorders. The aim of this study was to investigate the methylome and transcriptome of the first two early embryonic tissue lineages, the inner cell mass (ICM) and the trophectoderm (TE), from human blastocysts in association with paternal age and disease risk. High quality human blastocysts were donated with patient consent from donor oocyte IVF cycles from either APA (≥ 50 years) or young fathers. Blastocysts were mechanically separated into ICM and TE lineage samples for both methylome and transcriptome analyses. RESULTS: Significant differential methylation and transcription was observed concurrently in ICM and TE lineages of APA-derived blastocysts compared to those from young fathers. The methylome revealed significant enrichment for neuronal signaling pathways, as well as an association with neurodevelopmental disorders and imprinted genes, largely overlapping within both the ICM and TE lineages. Significant enrichment of neurodevelopmental signaling pathways was also observed for differentially expressed genes, but only in the ICM. In stark contrast, no significant signaling pathways or gene ontology terms were identified in the trophectoderm. Despite normal semen parameters in aged fathers, these significant molecular alterations can adversely contribute to downstream impacts on offspring health, in particular neurodevelopmental disorders like autism spectrum disorder and schizophrenia. CONCLUSIONS: An increased risk for neurodevelopmental disorders is well described in children conceived by aged fathers. Using blastocysts derived from donor oocyte IVF cycles to strategically control for maternal age, our data reveals evidence of methylation dysregulation in both tissue lineages, as well as transcription dysregulation in neurodevelopmental signaling pathways associated with APA fathers. This data also reveals that embryos derived from APA fathers do not appear to be compromised for initial implantation potential with no significant pathway signaling disruption in trophectoderm transcription. Collectively, our work provides insights into the complex molecular mechanisms that occur upon paternal aging during the first lineage differentiation in the preimplantation embryo. Early expression and epigenetic markers of APA-derived preimplantation embryos highlight the susceptibility of the future fetus to adverse health outcomes.


Assuntos
Transtorno do Espectro Autista , Humanos , Masculino , Envelhecimento , Blastocisto/metabolismo , Epigênese Genética , Pai , Pessoa de Meia-Idade , Feminino
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058355

RESUMO

Songbirds have one special accessory chromosome, the so-called germline-restricted chromosome (GRC), which is only present in germline cells and absent from all somatic tissues. Earlier work on the zebra finch (Taeniopygia guttata castanotis) showed that the GRC is inherited only through the female line-like the mitochondria-and is eliminated from the sperm during spermatogenesis. Here, we show that the GRC has the potential to be paternally inherited. Confocal microscopy using GRC-specific fluorescent in situ hybridization probes indicated that a considerable fraction of sperm heads (1 to 19%) in zebra finch ejaculates still contained the GRC. In line with these cytogenetic data, sequencing of ejaculates revealed that individual males from two families differed strongly and consistently in the number of GRCs in their ejaculates. Examining a captive-bred male hybrid of the two zebra finch subspecies (T. g. guttata and T. g. castanotis) revealed that the mitochondria originated from a castanotis mother, whereas the GRC came from a guttata father. Moreover, analyzing GRC haplotypes across nine castanotis matrilines, estimated to have diverged for up to 250,000 y, showed surprisingly little variability among GRCs. This suggests that a single GRC haplotype has spread relatively recently across all examined matrilines. A few diagnostic GRC mutations that arose since this inferred spreading suggest that the GRC has continued to jump across matriline boundaries. Our findings raise the possibility that certain GRC haplotypes could selfishly spread through the population via occasional paternal transmission, thereby outcompeting other GRC haplotypes that were limited to strict maternal inheritance, even if this was partly detrimental to organismal fitness.


Assuntos
Cromossomos , Células Germinativas , Herança Paterna , Aves Canoras/genética , Animais , Análise Citogenética , DNA Mitocondrial , Evolução Molecular , Feminino , Haplótipos , Masculino , Filogenia , Aves Canoras/classificação , Espermatozoides
6.
Trends Genet ; 37(10): 890-902, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34158173

RESUMO

While sperm mosaicism has few consequences for men, the offspring and future generations are unwitting recipients of gonadal cell mutations, often yielding severe disease. Recent studies, fueled by emergent technologies, show that sperm mosaicism is a common source of de novo mutations (DNMs) that underlie severe pediatric disease as well as human genetic diversity. Sperm mosaicism can be divided into three types: Type I arises during sperm meiosis and is non-age dependent; Type II arises in spermatogonia and increases as men age; and Type III arises during paternal embryogenesis, spreads throughout the body, and contributes stably to sperm throughout life. Where Types I and II confer little risk of recurrence, Type III may confer identifiable risk to future offspring. These mutations are likely to be the single largest contributor to human genetic diversity. New sequencing approaches may leverage this framework to evaluate and reduce disease risk for future generations.


Assuntos
Doença/genética , Genômica , Mosaicismo , Mutação , Espermatozoides/metabolismo , Humanos , Masculino , Espermatogônias/metabolismo
7.
EMBO J ; 39(23): e104579, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33034389

RESUMO

Environmental factors can change phenotypes in exposed individuals and offspring and involve the germline, likely via biological signals in the periphery that communicate with germ cells. Here, using a mouse model of paternal exposure to traumatic stress, we identify circulating factors involving peroxisome proliferator-activated receptor (PPAR) pathways in the effects of exposure to the germline. We show that exposure alters metabolic functions and pathways, particularly lipid-derived metabolites, in exposed fathers and their offspring. We collected data in a human cohort exposed to childhood trauma and observed similar metabolic alterations in circulation, suggesting conserved effects. Chronic injection of serum from trauma-exposed males into controls recapitulates metabolic phenotypes in the offspring. We identify lipid-activated nuclear receptors PPARs as potential mediators of the effects from father to offspring. Pharmacological PPAR activation in vivo reproduces metabolic dysfunctions in the offspring and grand-offspring of injected males and affects the sperm transcriptome in fathers and sons. In germ-like cells in vitro, both serum and PPAR agonist induce PPAR activation. Together, these results highlight the role of circulating factors as potential communication vectors between the periphery and the germline.


Assuntos
Células Germinativas/metabolismo , Exposição Paterna , Animais , Sangue , Epigênese Genética , Epigenômica , Pai , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Reprodução/fisiologia , Espermatozoides , Transcriptoma , Ferimentos e Lesões
8.
Am Nat ; 203(5): 590-603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635363

RESUMO

AbstractThe mechanisms underlying the divergence of reproductive strategies between closely related species are still poorly understood. Additionally, it is unclear which selective factors drive the evolution of reproductive behavioral variation and how these traits coevolve, particularly during early divergence. To address these questions, we quantified behavioral differences in a recently diverged pair of Nova Scotian three-spined stickleback (Gasterosteus aculeatus) populations, which vary in parental care, with one population displaying paternal care and the other lacking this. We compared both populations, and a full reciprocal F1 hybrid cross, across four major reproductive stages: territoriality, nesting, courtship, and parenting. We identified significant divergence in a suite of heritable behaviors. Importantly, F1 hybrids exhibited a mix of behavioral patterns, some of which suggest sex linkage. This system offers fresh insights into the coevolutionary dynamics of reproductive behaviors during early divergence and offers support for the hypothesis that coevolutionary feedback between sexual selection and parental care can drive rapid evolution of reproductive strategies.


Assuntos
Reprodução , Smegmamorpha , Animais , Territorialidade , Smegmamorpha/genética , Seleção Sexual
9.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34345914

RESUMO

Sperm histones represent an essential part of the paternally transmitted epigenome, but uncertainty exists about the role of those remaining in non-coding and repetitive DNA. We therefore analyzed the genome-wide distribution of the heterochromatic marker H4K20me3 in human sperm and somatic (K562) cells. To specify the function of sperm histones, we compared all H4K20me3-containing and -free loci in the sperm genome. Sperm and somatic cells possessed a very similar H4K20me3 distribution: H4K20me3 peaks occurred mostly in distal intergenic regions and repetitive gene clusters (in particular genes encoding odorant-binding factors and zinc-finger antiviral proteins). In both cell types, H4K20me3 peaks were enriched in LINEs, ERVs, satellite DNA and low complexity repeats. In contrast, H4K20me3-free nucleosomes occurred more frequently in genic regions (in particular promoters, exons, 5'-UTR and 3'-UTR) and were enriched in genes encoding developmental factors (in particular transcription activators and repressors). H4K20me3-free nucleosomes were also detected in substantial quantities in distal intergenic regions and were enriched in SINEs. Thus, evidence suggests that paternally transmitted histones may have a dual purpose: maintenance and regulation of heterochromatin and guidance towards transcription of euchromatin.


Assuntos
Histonas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Espermatozoides/fisiologia , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , DNA/genética , Éxons/genética , Genoma/genética , Heterocromatina/genética , Humanos , Células K562 , Masculino , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
10.
Proc Biol Sci ; 291(2014): 20232582, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196352

RESUMO

Parental care is a critical determinant of offspring fitness, and parents adjust their care in response to ecological challenges, including predation risk. The experiences of both mothers and fathers can influence phenotypes of future generations (transgenerational plasticity). If it is adaptive for parents to alter parental care in response to predation risk, then we expect F1 and F2 offspring who receive transgenerational cues of predation risk to shift their parental care behaviour if these ancestral cues reliably predict a similarly risky environment as their F0 parents. Here, we used three-spined sticklebacks (Gasterosteus aculeatus) to understand how paternal exposure to predation risk prior to mating alters reproductive traits and parental care behaviour in unexposed F1 sons and F2 grandsons. Sons of predator-exposed fathers took more attempts to mate than sons of control fathers. F1 sons and F2 grandsons with two (maternal and paternal) predator-exposed grandfathers shifted their paternal care (fanning) behaviour in strikingly similar ways: they fanned less initially, but fanned more near egg hatching. This shift in fanning behaviour matches shifts observed in response to direct exposure to predation risk, suggesting a highly conserved response to pre-fertilization predator exposure that persists from the F0 to the F1 and F2 generations.


Assuntos
Peixes , Smegmamorpha , Masculino , Animais , Feminino , Humanos , Comunicação Celular , Sinais (Psicologia) , Mães
11.
Proc Biol Sci ; 291(2027): 20241037, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39014998

RESUMO

Environmental variation often induces plastic responses in organisms that can trigger changes in subsequent generations through non-genetic inheritance mechanisms. Such transgenerational plasticity thus consists of environmentally induced non-random phenotypic modifications that are transmitted through generations. Transgenerational effects may vary according to the sex of the organism experiencing the environmental perturbation, the sex of their descendants or both, but whether they are affected by past sexual selection is unknown. Here, we use experimental evolution on an insect model system to conduct a first test of the involvement of sexual selection history in shaping transgenerational plasticity in the face of rapid environmental change (exposure to pesticide). We manipulated evolutionary history in terms of the intensity of sexual selection for over 80 generations before exposing individuals to the toxicant. We found that sexual selection history constrained adaptation under rapid environmental change. We also detected inter- and transgenerational effects of pesticide exposure in the form of increased fitness and longevity. These cross-generational influences of toxicants were sex dependent (they affected only male descendants), and intergenerational, but not transgenerational, plasticity was modulated by sexual selection history. Our results highlight the complexity of intra-, inter- and transgenerational influences of past selection and environmental stress on phenotypic expression.


Assuntos
Praguicidas , Seleção Sexual , Animais , Masculino , Feminino , Praguicidas/toxicidade , Evolução Biológica
12.
Biol Reprod ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696371

RESUMO

The field of Developmental Origins of Health and Disease (DOHaD) has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms that currently are focused on the epigenetic modifications, oxidative stresses, and cytokines.

13.
Mol Ecol ; 33(6): e17296, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361456

RESUMO

Dietary restriction in the form of fasting is a putative key to a healthier and longer life, but these benefits may come at a trade-off with reproductive fitness and may affect the following generation(s). The potential inter- and transgenerational effects of long-term fasting and starvation are particularly poorly understood in vertebrates when they originate from the paternal line. We utilised the externally fertilising zebrafish amenable to a split-egg clutch design to explore the male-specific effects of fasting/starvation on fertility and fitness of offspring independently of maternal contribution. Eighteen days of fasting resulted in reduced fertility in exposed males. While average offspring survival was not affected, we detected increased larval growth rate in F1 offspring from starved males and more malformed embryos at 24 h post-fertilisation in F2 offspring produced by F1 offspring from starved males. Comparing the transcriptomes of F1 embryos sired by starved and fed fathers revealed robust and reproducible increased expression of muscle composition genes but lower expression of lipid metabolism and lysosome genes in embryos from starved fathers. A large proportion of these genes showed enrichment in the yolk syncytial layer suggesting gene regulatory responses associated with metabolism of nutrients through paternal effects on extra-embryonic tissues which are loaded with maternal factors. We compared the embryo transcriptomes to published adult transcriptome datasets and found comparable repressive effects of starvation on metabolism-associated genes. These similarities suggest a physiologically relevant, directed and potentially adaptive response transmitted by the father, independently from the offspring's nutritional state, which was defined by the mother.


Assuntos
Gema de Ovo , Embrião não Mamífero , Pai , Peixe-Zebra , Animais , Masculino , Humanos , Peixe-Zebra/genética , Regulação da Expressão Gênica , Expressão Gênica
14.
Hum Reprod ; 39(6): 1161-1166, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569672

RESUMO

There is strong individual-level evidence that late fatherhood is related to a wide range of health disorders and conditions in offspring. Over the last decades, mean paternal ages at childbirth have risen drastically. This has alarmed researchers from a wide range of fields. However, existing studies have an important shortcoming in that they lack a long-term perspective. This article is a step change in providing such a long-term perspective. We unveil that in many countries the current mean paternal ages at childbirth and proportions of fathers of advanced age at childbirth are not unprecedented. Taking the detected U-shaped trend pattern into account, we discuss individual- and population-level implications of the recent increases in paternal ages at childbirth and highlight important knowledge gaps. At the individual level, some of the biological mechanisms that are responsible for the paternal age-related health risk might, at least to some degree, be counterbalanced by various social factors. Further, how these individual-level effects are linked to population health and human cognitive development might be influenced by various factors, including technical advances and regulations in prenatal diagnostics.


Assuntos
Parto , Idade Paterna , Humanos , Masculino , Feminino , Gravidez , Adulto , Pai , Pessoa de Meia-Idade
15.
J Evol Biol ; 37(1): 100-109, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285656

RESUMO

The evolutionary repercussions of parental effects-the impact of the developmental environment provided by parents on offspring-are often discussed as static effects that can have negative influences on offspring fitness that may even persist across generations. However, individuals are not passive recipients and may mitigate the persistence of parental effects through their behaviour. Here, we tested how the burying beetle, Nicrophorus orbicollis, a species with complex parental care, responded to poor parenting. We cross-fostered young and manipulated the duration of parental care received and measured the impact on traits of both F1 and F2 offspring to experimentally extricate the effect of poor parenting from other parental effects. As expected, reducing parental care negatively affected traits that are ecologically important for burying beetles, including F1 offspring development time and body size. However, F1 parents that received reduced care as larvae spent more time feeding F2 offspring than parents that received full care as larvae. As a result, both the number and mass of F2 offspring were unaffected by the developmental experience of their parents. Our results show that flexible parental care may be able to overcome poor developmental environments and limit negative parental effects to a single generation.


Assuntos
Besouros , Poder Familiar , Animais , Larva , Besouros/genética , Comportamento Animal , Evolução Biológica
16.
Brain Behav Immun ; 115: 258-279, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820975

RESUMO

Paternal pre-conceptual environmental experiences, such as stress and diet, can affect offspring brain and behavioral phenotypes via epigenetic modifications in sperm. Furthermore, maternal immune activation due to infection during gestation can reprogram offspring behavior and brain functioning in adulthood. However, the effects of paternal pre-conceptual exposure to immune activation on the behavior and physiology of offspring (F1) and grand-offspring (F2) are not currently known. We explored effects of paternal pre-conceptual exposure to viral-like immune activation on F1 and F2 behavioral and physiological phenotypes using a C57BL/6J mouse model. Males were treated with a single injection (intraperitoneal) of the viral mimetic polyinosinic:polycytidylic acid (Poly I:C: 12 mg/kg) then bred with naïve female mice four weeks after the Poly I:C (or 0.9% saline control) injection. The F1 offspring of Poly I:C treated fathers displayed increased depression-like behavior in the Porsolt swim test, an altered stress response in the novelty-suppressed feeding test, and significant transcriptomic changes in their hippocampus. Additionally, the F1 male offspring of Poly I:C treated F0 males showed significantly increased immune responsivity after a Poly I:C immune challenge (12 mg/kg). Furthermore, the F2 male grand-offspring took longer to enter and travelled significantly shorter distances in the light zone of the light/dark box. An analysis of the small noncoding RNA profiles in sperm from Poly I:C treated males and their male offspring revealed significant effects of Poly I:C on the sperm microRNA content at the time of conception and on the sperm PIWI-interacting RNA content of the male offspring. Notably, eight miRNAs with an FDR < 0.05 (miR-141-3p, miR-126b-5p, miR-669o-5p, miR-10b-3p, miR-471-5p, miR-463-5p, miR-148b-3p, and miR-181c-5p) were found to be significantly downregulated in the sperm of Poly I:C treated males. Collectively, we demonstrate that paternal pre-conceptual exposure to a viral immune challenge results in both intergenerational and transgenerational effects on brain and behavior that may be mediated by alterations in the sperm small noncoding RNA content.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Masculino , Feminino , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Sêmen , Espermatozoides , Pai , MicroRNAs/genética , MicroRNAs/farmacologia , Pequeno RNA não Traduzido/farmacologia , Poli I/farmacologia
17.
Brain Behav Immun ; 119: 520-538, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636562

RESUMO

Paternal pre-conceptual exposures, including stress, diet, substance abuse, parasite infection, and viral immune activation via Poly I:C, have been reported to influence the brains and behavior of offspring through sperm epigenetic changes. However, the effects of paternal (F0) pre-conceptual exposure to bacterial-induced immune activation on the behavior and physiology of F1 and F2 generations remain unexplored. We examined this using C57BL/6J mice. Eight-week-old males (F0) received a single intraperitoneal injection of the bacterial mimetic lipopolysaccharide (LPS: 5 mg/kg) or 0.9 % saline (vehicle control) before mating with naïve females at four weeks post-injection. Comprehensive behavioral assessments were conducted to investigate anxiety, social behaviors, depressive-like behaviors and cognition in both the F1 and F2 generations within the age range of 8 to 14 weeks. Results demonstrated that only female offspring of LPS-exposed fathers exhibited reduced anxiety levels in the light/dark box, large open field, and novelty-suppressed feeding test. These F1 female offspring also exhibited heightened sociability in the 3-chambered social interaction test and a reduced preference for saccharin in the saccharin preference test. Additionally, the F1 male offspring of LPS-challenged males demonstrated an increased total distance traveled in the light/dark box and a longer distance covered in the light zone. They also exhibited diminished preference for social novelty in the 3-chambered social interaction test and an elevated novel arm preference index in the Y-maze. In the F2 generation, male descendants of LPS-treated fathers showed reduced latency to feed in the novelty-suppressed feeding test. Additionally, the F2 generation of LPS-challenged fathers, but not the F1 generation, displayed enhanced immune response in both sexes after an acute LPS immune challenge (5 mg/kg). Analysis of sperm small noncoding RNA profiles from LPS-treated F0 mice revealed significant changes at 4 weeks after administration of LPS. These changes included three microRNAs, eight PIWI-interacting RNAs, and two transfer RNAs, exhibiting significant upregulation (mmu-miR-146a-5p, mmu-piR-27082 and mmu-piR-29102) or downregulation (mmu-miR-5110, mmu-miR-467e-3p, mmu-piR-22583, mmu-piR-23548, mmu-piR-36341, mmu-piR-50293, mmu-piR-16583, mmu-piR-36507, Mus_musculus_tRNA-Ile-AAT-2-1 and Mus_musculus_tRNA-Tyr-GTA-1-1). Additionally, we detected 52 upregulated small noncoding RNAs (including 9 miRNAs, 41 piRNAs, and 2 tRNAs) and 7 downregulated small noncoding RNAs (3 miRNAs, 3 piRNAs, and 1 tRNA) in the sperm of F1 offspring from LPS-treated males. These findings provide compelling evidence for the involvement of epigenetic mechanisms in the modulation of brain function and immunity, and associated behavioral and immunological traits, across generations, in response to bacterial infection.


Assuntos
Ansiedade , Comportamento Animal , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Espermatozoides , Animais , Masculino , Feminino , Camundongos , Lipopolissacarídeos/farmacologia , Espermatozoides/metabolismo , Comportamento Animal/fisiologia , Comportamento Social , Infecções Bacterianas/imunologia , Depressão/metabolismo , Epigênese Genética , MicroRNAs/metabolismo , MicroRNAs/genética , Exposição Paterna/efeitos adversos
18.
Horm Behav ; 162: 105536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522143

RESUMO

Paternal deprivation (PD) impairs social cognition and sociality and increases levels of anxiety-like behavior. However, whether PD affects the levels of empathy in offspring and its underlying mechanisms remain unknown. The present study found that PD increased anxiety-like behavior in mandarin voles (Microtus mandarinus), impaired sociality, reduced the ability of emotional contagion, and the level of consolation behavior. Meanwhile, PD reduced OT neurons in the paraventricular nucleus (PVN) in both male and female mandarin voles. PD decreased the level of OT receptor (OTR) mRNA in the anterior cingulate cortex (ACC) of male and female mandarin voles. Besides, OTR overexpression in the ACC reversed the PD-induced changes in anxiety-like behavior, social preference, emotional contagion, and consolation behavior. Interference of OTR expression in the ACC increased levels of anxiety-like behaviors, while it reduced levels of sociality, emotional contagion, and consolation. These results revealed that the OTR in the ACC is involved in the effects of PD on empathetic behaviors, and provide mechanistic insight into how social experiences affect empathetic behaviors.


Assuntos
Arvicolinae , Comportamento Animal , Giro do Cíngulo , Privação Paterna , Animais , Feminino , Masculino , Ansiedade/metabolismo , Arvicolinae/fisiologia , Giro do Cíngulo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Comportamento Social
19.
Horm Behav ; 164: 105605, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032207

RESUMO

The influence of maternal caregiving is a powerful force on offspring development. The absence of a father during early life in biparental species also has profound implications for offspring development, although it is far less studied than maternal influences. Moreover, we have limited understanding of the interactive forces that maternal and paternal caregiving impart on offspring. We investigated if behaviorally upregulating maternal care compensates for paternal absence on prairie vole (Microtus ochrogaster) pup development. We used an established handling manipulation to increase levels of caregiving in father-absent and biparental families, and later measured male offspring behavioral outcomes at sub-adulthood and adulthood. Male offspring raised without fathers were more prosocial (or possibly less socially anxious) than those raised biparentally. Defensive behavior and responses to contextual novelty were also influenced by the absence of fathers, but only in adulthood. Offensive aggression and movement in the open field test changed as a function of life-stage but not parental exposure. Notably, adult pair bonding was not impacted by our manipulations. Boosting parental care produced males that moved more in the open field test. Parental handling also increased oxytocin immunoreactive cells within the supraoptic nucleus of the hypothalamus (SON), and in the paraventricular nucleus (PVN) of biparentally-reared males. We found no differences in vasopressinergic cell groups. We conclude that male prairie voles are contextually sensitive to the absence of fathers and caregiving intensity. Our study highlights the importance of considering the ways early experiences synergistically shape offspring behavioral and neural phenotypes across the lifespan.

20.
Front Zool ; 21(1): 16, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898504

RESUMO

BACKGROUND: Parental care benefits offspring but comes with costs. To optimize the trade-off of costs and benefits, parents should adjust care based on intrinsic and/or extrinsic conditions. The harm to offspring hypothesis suggests that parents should invest more in younger offspring than older offspring because younger offspring are more vulnerable. However, this hypothesis has rarely been comprehensively tested, as many studies only reveal an inverse correlation between parental care and offspring age, without directly testing the effects of offspring age on their vulnerability. To test this hypothesis, we studied Kurixalus eiffingeri, an arboreal treefrog with paternal care. We first performed a field survey by monitoring paternal care during embryonic development. Subsequently, we conducted a field experiment to assess the prevalence of egg predators (a semi-slug, Parmarion martensi) and the plasticity of male care. Finally, we conducted a laboratory experiment to assess how embryo age affects predation by P. martensi. RESULTS: Our results showed that (1) male attendance and brooding frequency affected embryo survival, and (2) males attended and brooded eggs more frequently in the early stage than in the late stage. The experimental results showed that (3) males increased attendance frequency when the predators were present, and (4) the embryonic predation by the semi-slug during the early was significantly higher than in the late stage. CONCLUSIONS: Our findings highlight the importance of paternal care to embryo survival, and the care behavior is plastic. Moreover, our results provide evidence consistent with the predictions of the harm to offspring hypothesis, as males tend to care more for younger offspring which are more vulnerable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA