Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403852, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046073

RESUMO

N-type PbSe thermoelectric materials encounter challenges in improving the power factor due to the single-band structure near the Fermi level, which obstructs typical band convergence. The primary strategy for enhancing the thermoelectric figure of merit (ZT) for n-type PbSe involves reducing lattice thermal conductivity (κlat) by introducing various defect structures. However, lattice mismatches resulting from internal defects within the matrix can diminish carrier mobility, thereby affecting electrical transport properties. In this study, n-type AgCuTe-alloyed PbSe systems achieve a peak ZT value of ≈1.5 at 773 K. Transmission electron microscopy reveals nanoprecipitates of Ag2Te, the room temperature second phase of AgCuTe, within the PbSe matrix. Meanwhile, a unique semi-coherent phase boundary is observed between the PbSe matrix and the Ag2Te nanoprecipitates. This semi-coherent phase interface effectively scatters low-frequency phonons while minimizing damage to carrier mobility. Additionally, the dynamic doping effect of Cu atoms from the decomposition of AgCuTe within the matrix further optimize the high-temperature thermoelectric performance. Overall, these factors significantly enhance the ZT across the whole temperature range. The ZT value of ≈1.5 indicates high competitiveness compared to the latest reported n-type PbSe materials, suggesting that these findings hold promise for advancing the development of efficient thermoelectric systems.

2.
Small ; : e2400866, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639306

RESUMO

The scarcity of Te hampers the widespread use of Bi2Te3-based thermoelectric modules. Here, the thermoelectric module potential of PbSe is investigated by improving its carrier mobility. Initially, large PbSe crystals are grown with the temperature gradient method to mitigate grain boundary effects on carrier transport. Subsequently, light doping with <1mole‰ halogens (Cl/Br/I) increases room-temperature carrier mobility to ~1600 cm2 V-1 s-1, achieved by reducing carrier concentration compared to traditional heavy doping. Crystal growth design and light doping enhance carrier mobility without affecting effective mass, resulting in a high power factor ~40 µW cm-1 K-2 in PbSe-Cl/Br/I crystals at 300 K. Additionally, Cl/Br/I doping reduces thermal conductivity and bipolar diffusion, leading to significantly lower thermal conductivity at high temperature. Enhanced carrier mobility and suppressed bipolar effect boost ZT values across the entire temperature range in n-type PbSe-Cl/Br/I crystals. Specifically, ZT values of PbSe-Br crystal reach ~0.6 at 300 K, ~1.2 at 773 K, and the average ZT (ZTave) reaches ~1.0 at 300-773 K. Ultimately, ~5.8% power generation efficiency in a PbSe single leg with a maximum temperature cooling difference of 40 K with 7-pair modules is achieved. These results indicate the potential for cost-effective and high-performance thermoelectric cooling modules based on PbSe.

3.
Nano Lett ; 22(23): 9578-9585, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36411037

RESUMO

Epitaxially-fused superlattices of colloidal quantum dots (QD epi-SLs) may exhibit electronic minibands and high-mobility charge transport, but electrical measurements of epi-SLs have been limited to large-area, polycrystalline samples in which superlattice grain boundaries and intragrain defects suppress/obscure miniband effects. Systematic measurements of charge transport in individual, highly-ordered epi-SL grains would facilitate the study of minibands in QD films. Here, we demonstrate the air-free fabrication of microscale field-effect transistors (µ-FETs) with channels consisting of single PbSe QD epi-SL grains (2-7 µm channel dimensions) and analyze charge transport in these single-grain devices. The eight devices studied show p-channel or ambipolar transport with a hole mobility as high as 3.5 cm2 V-1 s-1 at 290 K and 6.5 cm2 V-1 s-1 at 170-220 K, one order of magnitude larger than that of previous QD solids. The mobility peaks at 150-220 K, but device hysteresis at higher temperatures makes the true mobility-temperature curve uncertain and evidence for miniband transport inconclusive.

4.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985602

RESUMO

Thermoelectric (TE) technology, which can convert scrap heat into electricity, has attracted considerable attention. However, broader applications of TE are hindered by lacking high-performance thermoelectric materials, which can be effectively progressed by regulating the carrier concentration. In this work, a series of PbSe(NaCl)x (x = 3, 3.5, 4, 4.5) samples were synthesized through the NaCl salt-assisted approach with Na+ and Cl- doped into their lattice. Both theoretical and experimental results demonstrate that manipulating the carrier concentration by adjusting the content of NaCl is conducive to upgrading the electrical transport properties of the materials. The carrier concentration elevated from 2.71 × 1019 cm-3 to 4.16 × 1019 cm-3, and the materials demonstrated a maximum power factor of 2.9 × 10-3 W m-1 K-2. Combined with an ultralow lattice thermal conductivity of 0.7 W m-1 K-1, a high thermoelectric figure of merit (ZT) with 1.26 at 690 K was attained in PbSe(NaCl)4.5. This study provides a guideline for chemical doping to improve the thermoelectric properties of PbSe further and promote its applications.

5.
Small ; 18(1): e2104916, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741425

RESUMO

Reduced dimension is one of the effective strategies to modulate thermoelectric properties. In this work, n-type PbSe/SnSe superlattices with quantum-well (QW) structure are fabricated by pulsed laser deposition. Here, it is demonstrated that the PbSe/SnSe multiple QW (MQW) shows a high power factor of ≈25.7 µW cm-1 K-2 at 300 K, four times larger than that of PbSe single layers. In addition, thermal conductivity falls below 0.32 ± 0.06 W m-1 K-1 due to the phonon scattering at interface when the PbSe well thickness is confined within the scale of phonon mean free path (1.8 nm). Featured with ultrahigh power factor and ultralow thermal conductivity, ZT at room temperature is significantly increased from 0.14 for PbSe single layer to 1.6 for PbSe/SnSe MQW.

6.
Small ; 18(48): e2205356, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251788

RESUMO

Lead selenide (PbSe) colloidal quantum dots (CQDs) are promising candidates for optoelectronic applications. To date, PbSe CQDs capped by halide ligands exhibit improved stability and solar cells using these CQDs as active layers have reported a remarkable power conversion efficiency (PCE) up to 10%. However, PbSe CQDs are more prone to oxidation, requiring delicate control over their processability and compromising their applications. Herein, an efficient strategy that addresses this issue by an in situ cation-exchange process is reported. This is achieved by a two-phase ligand exchange process where PbI2 serves as both a passivating ligand and cation-source inducing transformation of CdSe to PbSe. The defect density and carrier lifetime of PbSe CQD films are improved to 1.05 × 1016  cm-3 and 12.2 ns, whereas the traditional PbSe CQD films possess 1.9 × 1016  cm-3 defect density and 10.2 ns carrier lifetime. These improvements are translated into an enhancement of photovoltaic performance of PbSe solar cells, with a PCE of up to 11.6%, ≈10% higher than the previous record. Notably, the approach enables greatly improved stability and a two-month stability is successfully demonstrated. This strategy is expected to promote the fast development of PbSe CQD applications in low-cost and high-performance optoelectronic devices.

7.
Nanotechnology ; 33(16)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34983035

RESUMO

We report that high absorption PbSe colloidal quantum dots (QDs) having a peak absorbance beyond 2100 nm were synthesized and incorporated into InSnZnO (ITZO) channel layer-based thin film transistors (TFTs). It was intended that PbSe QDs with proportionally less photocurrent modulation can be remedied by semiconducting and low off-current ITZO-based TFT configuration. Multiple deposition scheme of PbSe QDs on ITZO metal oxide thin film gave rise to nearly linear increase of film thickness with acceptably uniform and smooth surface (less than 10 nm). Hybrid PbSe/ITZO thin film-based phototransistor exhibited the best performance of near infrared (NIR) detection in terms of response time, sensitivity and detectivity as high as 0.38 s, 3.91 and 4.55 × 107Jones at room temperature, respectively. This is indebted mainly from the effective diffusion of photogenerated carrier from the PbSe surface to ITZO channel layer as well as from the conduction band alignment between them. Therefore, we believe that our hybrid PbSe/ITZO material platform can be widely used to be in favour of incorporation of solution-processed colloidal light absorbing material into the high-performance metal oxide thin film transistor configuration.

8.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889254

RESUMO

The magnetic properties of lead selenide (PbSe) and indium-doped lead telluride (PbTe:In) composites have been studied by using the electron paramagnetic resonance (EPR) technique. The samples were obtained by using the pulsed laser deposition method (PLD). Temperature dependences of the EPR spectra were obtained. The analysis of the temperature dependencies of the integral intensity of the EPR spectra was performed using the Curie-Weiss law. In these materials, the paramagnetic centers of Pb1+ and Pb3+ ions were identified. The results are discussed.

9.
Nanotechnology ; 32(33)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048367

RESUMO

To develop excellent photoelectronic and photovoltaic devices, a semiconductor with high photoelectron production efficiency and broad band absorption is urgently required. In this article, novel II-type PbSe/ZnSe hetero-nanobelts with enhanced near-infrared absorption have been synthesized via a facile strategy of a partial cation-exchange reaction and thermal treatment. Derived from ZnSe·0.5N2H4nanobelts as templates, the belt-like morphology was preserved. Due to the mismatch of the crystal type and parameters between PbSe and ZnSe, the formed PbSe in the form of nanoparticles were separated out and decorated on the nanobelts. Furthermore, the composition ratio of Pb/Zn can be tuned through manipulating the adding amount of Pb2+cations, the reaction temperature and time. The ultraviolet-visible-infrared diffuse spectra measurements suggest that the as-prepared PbSe/ZnSe hetero-nanobelts exhibited a broad band absorption from 300 to 1000 nm. In addition, they demonstrated excellent photoresponsivity in the same wavelength region and displayed a peak at approximately 840 nm. Finally, the enhanced photoelectronic sensing mechanism was discussed.

10.
Sci Technol Adv Mater ; 19(1): 10-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29296127

RESUMO

In this work, CsPbBr3 and PbSe nanocomposites were synthesized to protect perovskite material from self-enlargement during reaction. UV absorption and photoluminescence (PL) spectra indicate that the addition of Se into CsPbBr3 quantum dots modified the electronic structure of CsPbBr3, increasing the band gap from 2.38 to 2.48 eV as the Cs:Se ratio increased to 1:3. Thus, the emission color of CsPbBr3 perovskite quantum dots was modified from green to blue by increasing the Se ratio in composites. According to X-ray diffraction patterns, the structure of CsPbBr3 quantum dots changed from cubic to orthorhombic due to the introduction of PbSe at the surface. Transmission electron microscopy and X-ray photoemission spectroscopy confirmed that the atomic distribution in CsPbBr3/PbSe composite clusters is uniform and the composite materials were well formed. The PL intensity of a CsPbBr3/PbSe sample with a 1:1 Cs:Se ratio maintained 50% of its initial intensity after keeping the sample for 81 h in air, while the PL intensity of CsPbBr3 reduced to 20% of its initial intensity. Therefore, it is considered that low amounts of Se could improve the stability of CsPbBr3 quantum dots.

11.
Proc Natl Acad Sci U S A ; 111(25): 9054-7, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927573

RESUMO

Self-assembly of nanocrystals (NCs) into superlattices is an intriguing multiscale phenomenon that may lead to materials with novel collective properties, in addition to the unique properties of individual NCs compared with their bulk counterparts. By using different dispersion solvents, we synthesized three types of PbSe NC superlattices--body-centered cubic (bcc), body-centered tetragonal (bct), and face-centered cubic (fcc)--as confirmed by synchrotron small-angle X-ray scattering. Solution calorimetric measurements in hexane show that the enthalpy of formation of the superlattice from dispersed NCs is on the order of -2 kJ/mol. The calorimetric measurements reveal that the bcc superlattice is the energetically most stable polymorph, with the bct being 0.32 and the fcc 0.55 kJ/mol higher in enthalpy. This stability sequence is consistent with the decreased packing efficiency of PbSe NCs from bcc (17.2%) to bct (16.0%) and to fcc (15.2%). The small enthalpy differences among the three polymorphs confirm a closely spaced energy landscape and explain the ease of formation of different NC superlattices at slightly different synthesis conditions.

12.
Nano Lett ; 16(9): 5714-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27540863

RESUMO

Epitaxially connected superlattices of self-assembled colloidal quantum dots present a promising route toward exquisite control of electronic structure through precise hierarchical structuring across multiple length scales. Here, we uncover propagation of disorder as an essential feature in these systems, which intimately connects order at the atomic, superlattice, and grain scales. Accessing theoretically predicted exotic electronic states and highly tunable minibands will therefore require detailed understanding of the subtle interplay between local and long-range structure. To that end, we developed analytical methods to quantitatively characterize the propagating disorder in terms of a real paracrystal model and directly observe the dramatic impact of angstrom scale translational disorder on structural correlations at hundreds of nanometers. Using this framework, we discover improved order accompanies increasing sample thickness and identify the substantial effect of small fractions of missing epitaxial bonds on statistical disorder. These results have significant experimental and theoretical implications for the elusive goals of long-range carrier delocalization and true miniband formation.

13.
Nano Lett ; 14(10): 6010-5, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25203870

RESUMO

Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. Here we develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. Using these QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells.

14.
Nano Lett ; 14(11): 6210-6, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25298154

RESUMO

We study charge injection and transport in PbSe nanocrystal thin films. By engineering the contact metallurgy and nanocrystal ligand exchange chemistry and surface passivation, we demonstrate partial Fermi-level pinning at the metal-nanocrystal interface and an insulator-to-metal transition with increased coupling and doping, allowing us to design high conductivity and mobility PbSe nanocrystal films. We construct complementary nanocrystal circuits from n-type and p-type transistors realized from a single nanocrystal material by selecting the contact metallurgy.

15.
Angew Chem Int Ed Engl ; 54(47): 14183-6, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26493368

RESUMO

How can ion-exchange process occur in nanocrystals without the size and shape changing and why is the ion transport much faster than in classical interdiffusion processes in macrocrystalline solids? We have investigated these processes at the molecular level by means of high-resolution and analytical electron microscopy in temperature-dependent kinetic experiments for several model reactions. The results clearly show a diffusion process that proceeds exclusively through the interstitial lattice positions with a subsequent "kick out" to remove individual ions from lattice sites without the formation of vacancies. This mechanism has not been observed in nanocrystalline systems before.

16.
Adv Mater ; 36(25): e2401828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466123

RESUMO

Thermoelectrics has applications in power generation and refrigeration. Since only commercial Bi2Te3 has a low abundance Te, PbSe gets attention. This work enhances the near-room temperature performance of p-type PbSe through enhancing carrier mobility via lattice plainification. Composition controlled and Cu-doped p-type PbSe crystals are grown through physical vapor deposition. Results exhibit an enhanced carrier mobility ≈2578 cm2 V-1 s-1 for Pb0.996Cu0.0004Se. Microstructure characterization and density functional theory calculations verify the introduced Cu atoms filled Pb vacancies, realizing lattice plainification and enhancing the carrier mobility. The Pb0.996Cu0.0004Se sample achieves a power factor ≈42 µW cm-1 K-2 and a ZT ≈ 0.7 at 300 K. The average ZT of it reaches ≈0.9 (300-573 K), resulting in a single-leg power generation efficiency of 7.1% at temperature difference of 270 K, comparable to that of p-type commercial Bi2Te3. A 7-pairs device paired the p-type Pb0.996Cu0.0004Se with the n-type commercial Bi2Te3 shows a maximum cooling temperature difference ≈42 K with the hot side at 300 K, ≈65% of that of the commercial Bi2Te3 device. This work highlights the potential of p-type PbSe for power generation and refrigeration near room temperature and hope to inspire researchers on replacing commercial Bi2Te3.

17.
ACS Nano ; 18(20): 13437-13449, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717390

RESUMO

Bulk PbSnSe has a two-phase region, or miscibility gap, as the crystal changes from a van der Waals-bonded orthorhombic 2D layered structure in SnSe-rich compositions to the related 3D-bonded rocksalt structure in PbSe-rich compositions. This structural transition drives a large contrast in the electrical, optical, and thermal properties. We realize low temperature direct growth of epitaxial PbSnSe thin films on GaAs via molecular beam epitaxy using an in situ PbSe surface treatment and show a significantly reduced two-phase region by stabilizing the Pnma layered structure out to Pb0.45Sn0.55Se, beyond the bulk limit around Pb0.25Sn0.75Se at low temperatures. Pushing further, we directly access metastable two-phase films of layered and rocksalt grains that are nearly identical in composition around Pb0.50Sn0.50Se and entirely circumvent the miscibility gap. We present microstructural and compositional evidence for an incomplete displacive transformation from a rocksalt to layered structure in these films, which we speculate occurs during the sample cooling to room temperature after synthesis. In situ temperature-cycling experiments on a Pb0.58Sn0.42Se rocksalt film reproduce characteristic attributes of a displacive transition and show a modulation in electronic properties. We find well-defined orientation relationships between the phases formed and reveal unconventional strain relief mechanisms involved in the crystal structure transformation using transmission electron microscopy. Overall, our work adds a scalable thin film integration route to harness the dramatic contrast in material properties in PbSnSe across a potentially ultrafast crystalline-crystalline structural transition.

18.
Nanomaterials (Basel) ; 13(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177111

RESUMO

In this paper, the adsorption effect of methane (CH4) gas molecular on monolayer PbSe with and without vacancy defects is studied based on first-principles calculations. The effects of the adsorption of methane molecular on monolayer PbSe and on the Se vacancy (VSe) and Pb vacancy (VPb) of monolayer PbSe are also explored. Our results show that methane molecules exhibit a good physical adsorption effect on monolayer PbSe with and without vacancy defects. Moreover, our simulations indicate that the adsorption capacity of CH4 molecules on monolayer PbSe can be enhanced by applying strain. However, for the monolayer PbSe with Vse, the adsorption capacity of CH4 molecules on the strained system decreases sharply. This indicates that applying strain can promote the dissociation of CH4 from VSe. Our results show that the strain can be used as an effective means to regulate the interaction between the substrate material and the methane gas molecules.

19.
ACS Appl Mater Interfaces ; 15(8): 10847-10857, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795914

RESUMO

Efficient and simple-to-fabricate light detectors in the mid infrared (MIR) spectral range are of great importance for various applications in existing and emerging technologies. Here, we demonstrate compact and efficient photodetectors operating at room temperature in a wavelength range of 2710-4250 nm with responsivities as high as 375 and 4 A/W. Key to the high performance is the combination of a sintered colloidal quantum dot (CQD) lead selenide (PbSe) and lead sulfide (PbS) heterojunction photoconductor with a metallic metasurface perfect absorber. The combination of this photoconductor stack with the metallic metasurface perfect absorber provides an overall ∼20-fold increase of the responsivity compared against reference sintered PbSe photoconductors. More precisely, the introduction of a PbSe/PbS heterojunction increases the responsivity by a factor of ∼2 and the metallic metasurface enhances the responsivity by an order of magnitude. The metasurface not only enhances the light-matter interaction but also acts as an electrode to the detector. Furthermore, fabrication of our devices relies on simple and inexpensive methods. This is in contrast to most of the currently available (state-of-the-art) MIR photodetectors that rely on rather expensive as well as nontrivial fabrication technologies that often require cooling for efficient operation.

20.
Indian J Occup Environ Med ; 27(2): 183-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600650

RESUMO

Introduction: Sickness presenteeism is a phenomenon where "workers go to work when ill." The objective of this study was to determine the prevalence of and work-related factors associated with presenteeism among nursing care providers in selected tertiary hospitals in Bangalore city. Methodology: Participants were selected using stratified sampling followed by simple random sampling. A questionnaire was designed to capture socio-demographic information, sickness-related behavior, performance-based self-esteem (PBSE), and selected work-related characteristics. Results: A total of 357 participants were enrolled in the study, 274 were staff nurses (S/N) and 83 were nursing assistants (N/A). About 75% of the participants reported presenteeism at least once in the last year, two-fifths did so in the last 4 weeks and nearly 15% were sick on the day of the interview. The mean Stanford Sickness Presenteeism Scale-6 score was 18.49 ± 3.84. The most frequent reason for presenteeism was "perceived mildness of the disease." In bivariate analysis, those who were younger, male, had children, higher qualifications, chronic ailment/s, financial commitments, lesser work experience, and higher PBSE had higher presenteeism scores. When introduced into a linear regression model, those S/N who had children [Standardized coefficient = 0.23 (0.40-1.97)], higher PBSE scores [Standardized coefficient = 0.385 (0.15-2.55)], and reported sickness absenteeism in the preceding 4 weeks [Standardized coefficient = 0.136 (0.12-1.01)] were significantly associated with higher presenteeism scores. Those N/A who had lesser work experience had higher presenteeism scores [Standardized coefficient = -0.33 (-0.02--0.004)]. Conclusion: Presenteeism is a common phenomenon among nursing care providers. It is imperative that both employers and employees be educated about its ill effects on the individual, fellow staff, and patients, followed by the adoption of preventive measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA