Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(9): e18274, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676362

RESUMO

TRP channels, are non-specific cationic channels that are involved in multiple physiological processes that include salivation, cellular secretions, memory extinction and consolidation, temperature, pain, store-operated calcium entry, thermosensation and functionality of the nervous system. Here we choose to look at the evidence that decisively shows how TRP channels modulate human neuron plasticity as it relates to the molecular neurobiology of sleep/circadian rhythm. There are numerous model organisms of sleep and circadian rhythm that are the results of the absence or genetic manipulation of the non-specific cationic TRP channels. Drosophila and mice that have had their TRP channels genetically ablated or manipulated show strong evidence of changes in sleep duration, sleep activity, circadian rhythm and response to temperature, noxious odours and pattern of activity during both sleep and wakefulness along with cardiovascular and respiratory function during sleep. Indeed the role of TRP channels in regulating sleep and circadian rhythm is very interesting considering the parallel roles of TRP channels in thermoregulation and thermal response with concomitant responses in growth and degradation of neurites, peripheral nerves and neuronal brain networks. TRP channels provide evidence of an ability to create, regulate and modify our sleep and circadian rhythm in a wide array of physiological and pathophysiological conditions. In the current review, we summarize previous results and novel recent advances in the understanding of calcium ion entry via TRP channels in different sleep and circadian rhythm conditions. We discuss the role of TRP channels in sleep and circadian disorders.


Assuntos
Ritmo Circadiano , Sono , Canais de Potencial de Receptor Transitório , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Animais , Humanos , Sono/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética
2.
Biochem Biophys Res Commun ; 732: 150359, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032409

RESUMO

We have previously developed a 3D video tracking system which enables us to analyze long-term quantitative analysis of gene expression in freely moving mice. In the present study, we improved 3D video tracking and developed a system that analyzes more detailed behavioral data. We succeeded in simultaneously analyzing sleep-wake, feeding, and drinking behavior rhythms in the same individual using our tracking system. This system will make it possible to measure gene expression in each tissue in vivo in real time in relation to the various behavioral rhythms mentioned above.


Assuntos
Comportamento Alimentar , Sono , Vigília , Animais , Camundongos , Sono/fisiologia , Vigília/fisiologia , Comportamento Alimentar/fisiologia , Masculino , Comportamento de Ingestão de Líquido/fisiologia , Imageamento Tridimensional/métodos , Camundongos Endogâmicos C57BL , Gravação em Vídeo/métodos
3.
Can J Physiol Pharmacol ; 101(3): 136-146, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450128

RESUMO

Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.


Assuntos
Relógios Circadianos , Hipertensão , Ratos , Camundongos , Animais , Ratos Endogâmicos Dahl , Relógios Circadianos/genética , Endotelinas , Rim/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Fatores de Transcrição/metabolismo , Pressão Sanguínea/fisiologia , Proteínas Circadianas Period/genética
4.
Biochem Biophys Res Commun ; 560: 14-20, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33965785

RESUMO

Clock genes express circadian rhythms in most organs. These rhythms are organized throughout the whole body, regulated by the suprachiasmatic nucleus (SCN) in the brain. Disturbance of these clock gene expression rhythms is a risk factor for diseases such as obesity. In the present study, to explore the role of clock genes in developing diabetes, we examined the effect of streptozotocin (STZ)-induced high glucose on Period1 (Per1) gene expression rhythm in the liver and the olfactory bub (OB) in the brain. We found a drastic increase of Per1 expression in both tissues after STZ injection while blood glucose content was low. After a rapid expression peak, Per1 expression showed no rhythm. Associated with an increase of glucose content, behavior became arrhythmic. Finally, we succeeded in detecting an increase of Per1 expression in mice hair follicles on day 1 after STZ administration, before the onset of symptoms. These results show that elevated Per1 expression by STZ plays an important role in the aggravation of diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Bulbo Olfatório/metabolismo , Proteínas Circadianas Period/biossíntese , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Ingestão de Líquidos/efeitos dos fármacos , Expressão Gênica , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Locomoção , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Periodicidade , Estreptozocina
5.
Biochem Biophys Res Commun ; 577: 64-70, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34507067

RESUMO

To detect a small amount of Period1 (Per1) expression, we developed a micro-photomultiplier tube (µPMT) system which can be used both in vivo and in vitro. Using this system, we succeeded in detecting Per1 gene expression in the skin of freely moving mice over 240 times higher compared with that of the tissue contact optical sensor (TCS) as previously reported. For in vitro studies, we succeeded in detecting elevated Per1 expression by streptozotocin (STZ) treatment in the scalp hairs at an early stage of diabetes, when glucose content in the blood was still normal. In addition, we could detect elevated Per1 expression in a single whisker hair at the time of diabetes onset. These results show that our µPMT system responds to minute changes in gene expression in freely moving mice in vivo and in mice hair follicles in vitro. Furthermore, Per1 in the hair can be used for a marker of diabetic aggravation.


Assuntos
Expressão Gênica , Luciferases/genética , Medições Luminescentes/métodos , Proteínas Circadianas Period/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cabelo/metabolismo , Luciferases/metabolismo , Medições Luminescentes/instrumentação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Movimento/fisiologia , Proteínas Circadianas Period/metabolismo , Reprodutibilidade dos Testes , Couro Cabeludo/metabolismo , Pele/citologia , Pele/metabolismo , Vibrissas/metabolismo
6.
Luminescence ; 36(1): 94-98, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32721066

RESUMO

Circadian disturbance of clock gene expression is a risk factor for diseases such as obesity, cancer, and sleep disorders. To study these diseases, it is necessary to monitor and analyze the expression rhythm of clock genes in the whole body for a long duration. The bioluminescent reporter enzyme firefly luciferase and its substrate d-luciferin have been used to generate optical signals from tissues in vivo with high sensitivity. However, little information is known about the stability of d-luciferin to detect gene expression in living animals for a long duration. In the present study, we examined the stability of a luciferin solution over 21 days. l-Luciferin, which is synthesized using racemization of d-luciferin, was at high concentrations after 21 days. In addition, we showed that bioluminescence of Period1 (Per1) expression in the liver was significantly decreased compared with the day 1 solution, although locomotor activity rhythm was not affected. These results showed that d-luciferin should be applied to the mouse within, at most, 7 days to detect bioluminescence of Per1 gene expression rhythm in vivo.


Assuntos
Luciferases de Vaga-Lume , Medições Luminescentes , Animais , Benzotiazóis , Luciferina de Vaga-Lumes , Expressão Gênica , Luciferases de Vaga-Lume/genética , Camundongos
7.
Cancer Sci ; 111(5): 1542-1554, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32086839

RESUMO

Current studies have shown that the clock gene Period 1 (Per1) is downregulated in various tumors and plays an important role in promoting tumor progression. However, the biological functions and mechanism of Per1 in tumors remain largely unknown. In this study, 86 specimens of oral squamous cell carcinoma (OSCC) tissues and adjacent noncancerous tissues were collected to determine the Per1 expression level and the clinical significance of Per1 expression. Per1 was stably inhibited or overexpressed in OSCC cells to investigate its function and mechanism in vitro and in vivo. We found that Per1 was remarkably downregulated in OSCC and that low Per1 expression was significantly associated with TNM clinical stage and poor prognosis of OSCC patients. Per1 overexpression in SCC15 OSCC cells (Per1-OE SCC15 cells) significantly promoted autophagy and apoptosis while inhibiting proliferation and the AKT/mTOR pathway. However, the results obtained in Per1-silenced TSCCA OSCC cells were opposite those obtained in Per1-OE SCC15 cells. After addition of the AKT activator SC79 to Per1-OE SCC15 cells, the increased autophagy and apoptosis as well as decreased proliferation were remarkably rescued. Furthermore, increased apoptosis was significantly rescued in Per1-OE SCC15 cells treated with the autophagy inhibitor autophinib. In vivo tumorigenicity assays also confirmed that Per1 overexpression suppressed tumor growth. Taken together, our findings demonstrate for the first time that Per1 promotes OSCC progression by inhibiting autophagy-mediated cell apoptosis and enhancing cell proliferation in an AKT/mTOR pathway-dependent manner, and Per1 could be used as a valuable therapeutic target for OSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Proteínas Circadianas Period/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto , Animais , Apoptose , Autofagia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Proteínas Circadianas Period/genética , Transdução de Sinais
8.
Biochem Biophys Res Commun ; 529(4): 898-903, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819596

RESUMO

Clock genes express circadian rhythms in most organs. These rhythms are organized throughout the whole body, regulated by the suprachiasmatic nucleus (SCN) in the brain. Disturbance of these clock gene expression rhythms is a risk factor for diseases such as obesity and cancer. To understand the mechanism of regulating clock gene expression rhythms in vivo, multiple real time recording systems are required. In the present study, we developed a double recording system of Period1 expression rhythm in peripheral tissue (liver) and the brain. In peripheral tissue, quantification of gene expression in a steadily moving target was achieved by using a photomultiplier tube (PMT) attached to a tissue contact optical sensor (TCS). Using this technique, we were able to analyze circadian rhythms of clock gene expression over a prolonged period in the liver and olfactory bub (OB) of the brain. The present double recording system has no effect on behavioral activity or rhythm. Our novel system thus successfully quantifies clock gene expression in deep areas of the body in freely moving mice for a period sufficient to analyze circadian dynamics. In addition, our double recording system can be widely applied to many areas of biomedical research, as well as applications beyond medicine.


Assuntos
Ritmo Circadiano/fisiologia , Transdução de Sinal Luminoso , Fígado/fisiologia , Bulbo Olfatório/fisiologia , Proteínas Circadianas Period/genética , Núcleo Supraquiasmático/fisiologia , Animais , Ritmo Circadiano/efeitos da radiação , Eletrodos Implantados , Regulação da Expressão Gênica , Genes Reporter , Luz , Fígado/efeitos da radiação , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Transgênicos , Movimento/fisiologia , Bulbo Olfatório/efeitos da radiação , Optogenética , Proteínas Circadianas Period/metabolismo , Técnicas Estereotáxicas , Núcleo Supraquiasmático/efeitos da radiação
9.
Luminescence ; 35(8): 1248-1253, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32573071

RESUMO

Because the disruption of circadian clock gene is a risk factor in many diseases such as obesity and cancer, it is important to monitor and analyzed the expression of the rhythm of the clock gene throughout the body over a long period of time. Although we previously reported on a new gene expression analysis system tracking a target position on the body surface of freely moving mice, the experimental apparatus required a large space. We have therefore developed an in vivo recording system using a portable photomultiplier tube (PMT) system attached to an optical fibre. Directly connecting the target area with the device, we could easily measure the photon counts in a very small space. However, little information is known about the characteristics of optical fibres when exposed to twisting/looping in association with a moving mouse and the effect of the surface of optical fibre. In the present study, we report on the characteristics of optical fibres to detect gene expression rhythm in freely moving mice. Using this portable optical device directly connected with a target area, we were able to measure the circadian rhythm of clock gene expression over a prolonged period in freely moving mice in a small space.


Assuntos
Bulbo Olfatório , Núcleo Supraquiasmático , Animais , Ritmo Circadiano/genética , Tecnologia de Fibra Óptica , Expressão Gênica , Camundongos
10.
Am J Physiol Renal Physiol ; 316(5): F807-F813, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759025

RESUMO

Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.


Assuntos
Pressão Sanguínea , Ritmo Circadiano , Canais Epiteliais de Sódio/metabolismo , Hipertensão/prevenção & controle , Néfrons/metabolismo , Proteínas Circadianas Period/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Caseína Quinases/antagonistas & inibidores , Caseína Quinases/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Desoxicorticosterona/análogos & derivados , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Mineralocorticoides , Natriurese , Néfrons/efeitos dos fármacos , Proteínas Circadianas Period/antagonistas & inibidores , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Pirimidinas/farmacologia , Cloreto de Sódio na Dieta , Fatores de Tempo , Xenopus
11.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427705

RESUMO

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Hipertensão/genética , Proteínas Circadianas Period/deficiência , Animais , Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Mineralocorticoides , Proteínas Circadianas Period/genética , Cloreto de Sódio na Dieta/metabolismo
12.
Alcohol Clin Exp Res ; 40(2): 291-300, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26842248

RESUMO

BACKGROUND: Circadian rhythms are essential for adapting to the environment. Chronic alcohol consumption often leads to sleep and circadian disruptions, which may impair the life quality of individuals with alcohol use disorders and contribute to the morbidity associated with alcoholism. METHODS: We used a pair-feeding liquid diet alcohol exposure protocol (6 weeks duration) in PER1::LUC transgenic rats to examine the effects of chronic alcohol exposure on: (i) diurnal rhythms of core body temperature and locomotor activity, (ii) plasma corticosterone (CORT) concentrations, and (iii) rhythms of ex vivo Period1 (Per1) expression in the suprachiasmatic nucleus (SCN), pituitary, and adrenal glands. We followed multiple circadian outputs not only to examine individual components, but also to assess the relative phase relationships among rhythms. RESULTS: We found that chronic alcohol consumption: (i) reduced 24-hour body temperature and locomotor activity counts in the dark period, (ii) advanced the acrophase of diurnal rhythms of body temperature and locomotor activity, (iii) abolished the phase difference between temperature and activity rhythms, (iv) blunted and advanced the diurnal CORT rhythm, and (v) advanced Per1 expression in the adrenal and pituitary glands but not in the SCN. We found that chronic alcohol altered the phase relationships among diurnal rhythms and between the central (SCN) and peripheral (adrenal and pituitary) molecular clocks. CONCLUSIONS: Our findings suggest that desynchrony among internal rhythms is an important and overlooked aspect of alcohol-induced circadian disruptions. The misalignment of phases among rhythms may compromise normal physiological functions and put individuals with chronic alcohol use at greater risk for developing other physical and mental health issues. How this desynchrony occurs and the extent to which it participates in alcohol-related pathologies requires further investigation.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Ritmo Circadiano/efeitos dos fármacos , Glândulas Suprarrenais/química , Animais , Temperatura Corporal/efeitos dos fármacos , Corticosterona/sangue , Masculino , Atividade Motora/efeitos dos fármacos , Proteínas Circadianas Period/análise , Hipófise/química , Ratos , Ratos Transgênicos , Ratos Wistar , Núcleo Supraquiasmático/química
13.
Am J Physiol Renal Physiol ; 309(11): F933-42, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26377793

RESUMO

We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na(+) reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na(+) reabsorption. Previous work has demonstrated that expression of Na(+)/H(+) exchanger 3 (NHE3) oscillates with a circadian pattern and Na(+)-glucose cotransporter (SGLT)1 has been demonstrated to be a circadian target in the colon, but whether these target genes are regulated by Per1 has not been investigated in the kidney. The goal of the present study was to determine if Per1 regulates the expression of NHE3, SGLT1, and SGLT2 in the kidney. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of SGLT1 and NHE3 but not SGLT2 in the renal cortex of mice. Per1 small interfering RNA and pharmacological blockade of Per1 nuclear entry in human proximal tubule HK-2 cells yielded the same results. Examination of heterogeneous nuclear RNA suggested that the effects of Per1 on NHE3 and SGLT1 expression occurred at the level of transcription. Per1 and the circadian protein CLOCK were detected at promoters of NHE3 and SGLT1. Importantly, both membrane and intracellular protein levels of NHE3 and SGLT1 were decreased after blockade of nuclear Per1 entry. This effect was associated with reduced activity of Na(+)-K(+)-ATPase. These data demonstrate a role for Per1 in the transcriptional regulation of NHE3 and SGLT1 in the kidney.


Assuntos
Túbulos Renais Proximais/metabolismo , Proteínas Circadianas Period/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Regiões Promotoras Genéticas , Pirimidinas/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Transfecção
14.
Hippocampus ; 25(2): 142-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25160468

RESUMO

In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Relógios Circadianos/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Melatonina/farmacologia , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Dendritos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Mesocricetus , Tamanho do Órgão , Fotoperíodo , RNA Mensageiro/metabolismo , Testículo/anatomia & histologia , Testículo/efeitos dos fármacos
15.
Front Neuroendocrinol ; 35(1): 111-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24287074

RESUMO

Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic-pituitary-gonadal axis (HPG), the hypothalamic-adrenal-pituitary (HPA) axis, and sleep-arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions.


Assuntos
Ritmo Circadiano/fisiologia , Caracteres Sexuais , Sono/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia
16.
Eur J Neurosci ; 42(2): 1839-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25885685

RESUMO

The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in a subset of neurons in the ventral region of the suprachiasmatic nucleus (SCN). While VIP is known to be important for the synchronization of the SCN network, the role of VIP in photic regulation of the circadian system has received less attention. In the present study, we found that the light-evoked increase in electrical activity in vivo was unaltered by the loss of VIP. In the absence of VIP, the ventral SCN still exhibited N-methyl-d-aspartate-evoked responses in a brain slice preparation, although the absolute levels of neural activity before and after treatment were significantly reduced. Next, we used calcium imaging techniques to determine if the loss of VIP altered the calcium influx due to retinohypothalamic tract stimulation. The magnitude of the evoked calcium influx was not reduced in the ventral SCN, but did decline in the dorsal SCN regions. We examined the time course of the photic induction of Period1 in the SCN using in situ hybridization in VIP-mutant mice. We found that the initial induction of Period1 was not reduced by the loss of this signaling peptide. However, the sustained increase in Period1 expression (after 30 min) was significantly reduced. Similar results were found by measuring the light induction of cFOS in the SCN. These findings suggest that VIP is critical for longer-term changes within the SCN circuit, but does not play a role in the acute light response.


Assuntos
Regulação da Expressão Gênica/genética , Luz , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Escuridão , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , N-Metilaspartato/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas v-fos/metabolismo , Técnicas de Patch-Clamp , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/genética
17.
Addict Biol ; 20(6): 1001-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26515884

RESUMO

The use of mice in alcohol research provides an excellent model system for a better understanding of the genetics and neurobiology of alcohol addiction. Almost 60 years ago, alcohol researchers began to test strains of mice for alcohol preference and intake. In particular, various voluntary alcohol drinking paradigms in the home cage were developed. In mouse models of voluntary oral alcohol consumption, animals have concurrent access to water and either one or several concentrated alcohol solutions in their home cages. Although these models have high face validity, many experimental conditions require a more precise monitoring of alcohol consumption in mice in order to capture the role of specific strains or genes, or any other manipulation on alcohol drinking behavior. Therefore, we have developed a fully automated, highly precise monitoring system for alcohol drinking in mice in the home cage. This system is now commercially available. We show that this drinkometer system allows for detecting differences in drinking behavior (i) in transgenic mice, (ii) following alcohol deprivation, and (iii) following stress applications that are usually not detected by classical home-cage drinking paradigms. In conclusion, our drinkometer system allows disturbance-free and high resolution monitoring of alcohol drinking behavior. In particular, micro-drinking and circadian drinking patterns can be monitored in genetically modified and inbred strains of mice after environmental and pharmacological manipulation, and therefore this system represents an improvement in measuring behavioral features that are of relevance for the development of alcohol use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Automação Laboratorial/instrumentação , Pesquisa Comportamental/instrumentação , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Alcoolismo/psicologia , Animais , Depressores do Sistema Nervoso Central/farmacologia , Ritmo Circadiano , Modelos Animais de Doenças , Desenho de Equipamento , Etanol/farmacologia , Habituação Psicofisiológica/fisiologia , Abrigo para Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Proteínas Circadianas Period/genética , Quinina/farmacologia , Estresse Psicológico/psicologia , Paladar/efeitos dos fármacos , Ioimbina/farmacologia
18.
Gen Comp Endocrinol ; 197: 56-64, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24362257

RESUMO

Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response.


Assuntos
Ritmo Circadiano/fisiologia , Sistema Imunitário/fisiologia , Luz , Phodopus/fisiologia , Fotoperíodo , Animais , Ritmo Circadiano/efeitos da radiação , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Hormônio Liberador de Gonadotropina/genética , Hormônios Hipotalâmicos/genética , Sistema Imunitário/efeitos da radiação , Lipopolissacarídeos/farmacologia , Masculino , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Phodopus/genética , Proteínas Tirosina Fosfatases/genética , Receptores de Melatonina/genética , Reprodução/fisiologia , Reprodução/efeitos da radiação , Estações do Ano , Espermátides/fisiologia , Espermatozoides/fisiologia
19.
Am J Physiol Renal Physiol ; 305(12): F1697-704, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24154698

RESUMO

The circadian clock plays an important role in the regulation of physiological processes, including renal function and blood pressure. We have previously shown that the circadian protein period (Per)1 regulates the expression of multiple Na(+) transport genes in the collecting duct, including the α-subunit of the renal epithelial Na(+) channel. Consistent with this finding, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. We have also recently demonstrated the potential opposing actions of cryptochrome (Cry)2 on Per1 target genes. Recent work by others has demonstrated that Cry1/2 regulates aldosterone production through increased expression of the adrenal gland-specific rate-limiting enzyme 3ß-dehydrogenase isomerase (3ß-HSD). Therefore, we tested the hypothesis that Per1 plays a role in the regulation of aldosterone levels and renal Na(+) retention. Using RNA silencing and pharmacological blockade of Per1 nuclear entry in the NCI-H295R human adrenal cell line, we showed that Per1 regulates 3ß-HSD expression in vitro. These results were confirmed in vivo: mice with reduced levels of Per1 had decreased levels of plasma aldosterone and decreased mRNA expression of 3ß-HSD. We postulated that mice with reduced Per1 would have a renal Na(+)-retaining defect. Indeed, metabolic cage experiments demonstrated that Per1 heterozygotes excreted more urinary Na(+) compared with wild-type mice. Taken together, these data support the hypothesis that Per1 regulates aldosterone levels and that Per1 plays an integral role in the regulation of Na(+) retention.


Assuntos
Aldosterona/metabolismo , Rim/metabolismo , Proteínas Circadianas Period/metabolismo , Sódio/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Criptocromos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/efeitos dos fármacos , Proteínas Circadianas Period/genética , RNA Interferente Pequeno/farmacologia
20.
Biol Reprod ; 89(2): 35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23843233

RESUMO

The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is the central pacemaker driving rhythms in endocrine physiology. Gonadal steroid hormones affect behavioral rhythms and clock gene expression. However, the impact of fluctuating ovarian steroid levels during the estrous cycle on internal circadian organization remains to be determined. Further, it is not known if steroid hormone depletion, as in menopause, affects the timing system. To determine the influence of estrous cycle stage and steroid depletion on circadian organization, we measured clock gene expression in the SCN and peripheral tissues from cycling and ovariectomized (OVX) period1-luciferase (per1-luc) transgenic rats. The estrous cycle had modest effects on mean phase and phase distribution of per1-luc expression in the SCN. Surprisingly, peak per1-luc expression in the SCN was widely distributed mainly at night, regardless of cycle stage, an effect eliminated by OVX. Treatment of SCN tissue explants with ovarian steroids did not significantly affect per1-luc expression, suggesting that brain regions outside the SCN mediate the phasic effects of steroids. Our data demonstrate that estrous cycle stage has tissue-dependent effects on the phase of per1-luc expression, phase synchrony among oscillators, and the phase relationship between some peripheral clocks and the light-dark cycle. They also reveal that steroid hormone depletion following OVX alters the timing system, suggesting that the decline in hormone levels, common during the transition to menopause, may be associated with irregular internal circadian organization. This effect on the timing system could contribute to the behavioral and physiological changes associated with this transition.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Estradiol/farmacologia , Ciclo Estral/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Progesterona/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Ritmo Circadiano/fisiologia , Ciclo Estral/metabolismo , Feminino , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Ovariectomia , Proteínas Circadianas Period/genética , Ratos , Ratos Transgênicos , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA