Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788599

RESUMO

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Assuntos
Subpopulações de Linfócitos B/imunologia , Epitopos/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Transferência Adotiva , Animais , Anticorpos Antiprotozoários/metabolismo , Modelos Animais de Doenças , Epitopos/genética , Engenharia Genética , Humanos , Evasão da Resposta Imune , Imunogenicidade da Vacina , Camundongos , Camundongos SCID , Proteínas de Protozoários/genética , Relação Estrutura-Atividade , Vacinação
2.
J Infect Dis ; 229(3): 795-799, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889513

RESUMO

The RTS,S/AS02A malaria vaccine is based on the Plasmodium falciparum circumsporozoite protein (PfCSP), which is O-fucosylated on the sporozoite surface. We determined whether RTS,S/AS02A-induced immunoglobulin G (IgG) antibodies recognize vaccine-like nonfucosylated PfCSP better than native-like fucosylated PfCSP. Similar to previous vaccine trials, RTS,S/AS02A vaccination induced high anti-PfCSP IgG levels associated with malaria protection. IgG recognition of nonfucosylated and fucosylated PfCSP was equivalent, suggesting that PfCSP fucosylation does not affect antibody recognition. Clinical Trials Registration. NCT00197041.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Malária Falciparum/prevenção & controle , Imunoglobulina G , Anticorpos Antiprotozoários , Proteínas de Protozoários
3.
Malar J ; 22(1): 126, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061695

RESUMO

BACKGROUND: The human host elicits specific immune responses after exposure to various life stages of the malaria parasite as well as components of mosquito saliva injected into the host during a mosquito bite. This study describes differences in IgG responses against antigens derived from the sporozoite (PfCSP), asexual stage parasite (PfEBA175) and the gametocyte (Pfs230), in addition to an Anopheles gambiae salivary gland antigen (gSG6-P1), in two communities in Ghana with similar blood stage malaria parasite prevalence. METHODS: This study used archived plasma samples collected from an earlier cross-sectional study that enrolled volunteers aged from 6 months to 70 years from Simiw, peri-urban community (N = 347) and Obom, rural community (N = 291). An archived thick and thin blood smear for microscopy was used for the estimation of Plasmodium parasite density and species and DNA extraction from blood spots and P. falciparum confirmation was performed using PCR. This study used the stored plasma samples to determine IgG antibody levels to P. falciparum and Anopheles salivary antigens using indirect ELISA. RESULTS: Individuals from Simiw had significantly higher levels of IgG against mosquito gSG6-P1 [median (95%CI)] [2.590 (2.452-2.783) ng/mL] compared to those from Obom [2.119 (1.957-2.345) ng/mL], p < 0.0001. Both IgG responses against Pfs230proC (p = 0.0006), and PfCSP (p = 0.002) were significantly lower in volunteers from Simiw compared to the participants from Obom. The seroprevalence of PfEBA-175.5R (p = 0.8613), gSG6-P1 (p = 0.0704), PfCSP (p = 0.7798) IgG were all similar in Obom and Simiw. However, Pfs230 seroprevalence was significantly higher at Obom compared to Simiw (p = 0.0006). Spearman correlation analysis showed no significant association between IgG responses against gSG6-P1, PfCSP, Pfs230proC and PfEBA-175.5R and parasite density at both Obom and Simiw (p > 0.05). CONCLUSION: In conclusion, the study showed that participants from Simiw had higher concentrations of circulating gSG6-P1 IgG antibodies but lower concentrations of P. falciparum antibodies, PfCSP IgG and Pfs230proC IgG compared to participants from Obom.


Assuntos
Anopheles , Mordeduras e Picadas de Insetos , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum , Gana/epidemiologia , Formação de Anticorpos , Estudos Soroepidemiológicos , Estudos Transversais , Malária Falciparum/parasitologia , Malária/epidemiologia , Imunoglobulina G , Anopheles/fisiologia
4.
Malar J ; 20(1): 436, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758827

RESUMO

BACKGROUND: The currently used malaria vaccine, RTS,S, is designed based on the Plasmodium falciparum circumsporozoite protein (PfCSP). The pfcsp gene, besides having different polymorphic patterns, can vary between P. falciparum isolates due to geographical origin and host immune response. Such aspects are essential when considering the deployment of the RTS,S vaccine in a certain region. Therefore, this study assessed the genetic diversity of P. falciparum in Sudan based on the pfcsp gene by investigating the diversity at the N-terminal, central repeat, and the C-terminal regions. METHODS: A cross-sectional molecular study was conducted; P. falciparum isolates were collected from different health centres in Khartoum State between January and December 2019. During the study period, a total of 261 febrile patients were recruited. Malaria diagnosis was made by expert microscopists using Giemsa-stained thick and thin blood films. DNA samples were examined by the semi-nested polymerase chain reaction (PCR). Single clonal infection of the confirmed P. falciparum cases, were used to amplify the pfcsp gene. The amplified amplicons of pfcsp have been sequenced using the Sanger dideoxy method. The obtained sequences of pfcsp nucleotide diversity parameters including the numbers of haplotypes (Hap), haplotypes diversity (Hapd), the average number of nucleotide differences between two sequences (p), and the numbers of segregating sites (S) were obtained. The haplotype networks were constructed using the online tcsBU software. Natural selection theory was also tested on pfcsp using Fuand Li's D, Fuand Li's F statistics, and Tajima's D test using DnaSP. RESULTS: In comparison with the different pfcsp reference strains, the Sudanese isolates showed high similarity with other African isolates. The results of the N-terminal region showed the presence of 2 different haplotypes with a Hapd of 0.425 ± 0.00727. The presence of the unique insertion of NNNGDNGREGKDEDKRDGNN was reported. The KLKQP motif was conserved in all the studied isolates. At the central repeat region, 11 haplotypes were seen with a Hapd of 0.779 ± 0.00097. The analysis of the genetic diversity in the C-terminal region showed the presence of 10 haplotypes with a Hapd of 0.457 ± 0.073. Several non-synonymous amino acids changes were also seen at the Th2R and the Th3R T-cell epitope regions including T317K, E317K, Q318E, K321N, I322K, T322K, R322K, K324Q, I327L, G352N, S354P, R355K, N356D, Q357E, and E361A. CONCLUSIONS: In this study, the results indicated a high conservation at the pfcsp gene. This may further contribute in understanding the genetic polymorphisms of P. falciparum prior to the deployment of the RTS,S vaccine in Sudan.


Assuntos
Variação Genética , Vacinas Antimaláricas/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Estudos Transversais , Feminino , Amplificação de Genes , Haplótipos , Humanos , Masculino , Plasmodium falciparum/química , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Sudão
5.
Parasite Immunol ; 41(5): e12624, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30883819

RESUMO

Plasmodium falciparum circumsporozoite protein (PfCSP) is the main target antigen in development of pre-erythrocytic malaria vaccines. To evaluate PfCSP vaccines in animal models, challenge by intravenous sporozoite injection is preferentially used. However, in clinical trials, vaccinated human volunteers are exposed to the bites of malaria-infected mosquitoes. In this study, we down-selected Escherichia coli-produced full-length PfCSP (PfCSP-F) and its three truncated PfCSPs based on their abilities to elicit immune response and protection in mice against two challenge models. We showed that immunization with three doses of PfCSP-F elicited high anti-PfCSP antibody titres and 100% protection against the bites of infected mosquitoes. Meanwhile, three-dose truncated PfCSP induced 60%-70% protection after immunization with each truncated PfCSP. Heterologous prime-boost immunization regimen with adenovirus-PfCSP-F and R32LR greatly induced complete protection against intravenous sporozoite injection. Our results suggest that Abs to both anti-repeat and anti-nonrepeat regions induced by PfCSP-F are required to confer complete protection against challenge by the bites of infected mosquitoes, whereas anti-repeat Abs play an important role in protection against intravenous sporozoite injection. Our findings provide a potential clinical application that PfCSP-F vaccine induces potent Abs capable of neutralizing sporozoites in the dermis inoculated by infected mosquitoes and subsequently sporozoites in the blood circulation.


Assuntos
Imunização , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Humanos , Malária/parasitologia , Camundongos
6.
Malar J ; 15: 201, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068454

RESUMO

BACKGROUND: Plasmodium circumsporozoite protein (CSP) is a major surface antigen present in the sporozoite (Spz) stage of a malaria parasite. RTS, S vaccine, the most clinically advanced malaria vaccine, consists of a large portion of Plasmodium falciparum CSP (PfCSP). A highly infectious, recombinant rodent malaria, Plasmodium yoelii parasite bearing a full-length PfCSP, PfCSP/Py Spz, was needed as a tool to evaluate the role of PfCSP in mediating, protective, anti-malaria immunity in a mouse model. METHODS: A transgenic parasite, PfCSP/Py Spz, was generated by inserting a construct expressing the PfCSP at the locus of the P. yoelii CSP gene by double cross-over homologous recombination. Then the biological and protective properties of PfCSP/Py Spz were determined. RESULTS: This PfCSP/Py parasite produced up to 30,000 Spz in mosquito salivary glands, which is equal or even higher than the number of Spz produced by wild-type P. yoelii parasites. Five bites of PfCSP/Py-infected mosquitoes could induce blood infection in BALB/c mice. CONCLUSIONS: The current study has demonstrated a successful establishment of a transgenic P. yoelii parasite clone that is able to express a full-length PfCSP, PfCSP/Py parasite. Importantly, this PfCSP/Py parasite can be as infectious as the wild-type P. yoelii parasite both in mosquito vector and in mouse, a mammalian host. A new transgenic parasite that expresses a full-length PfCSP may become a useful tool for researchers to investigate immunity against PfCSP in a mouse model.


Assuntos
Culicidae/parasitologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/imunologia , Plasmodium falciparum/genética , Glândulas Salivares/parasitologia , Linfócitos T/parasitologia , Vacinas Sintéticas/imunologia
7.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808064

RESUMO

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Malária Falciparum , Proteínas de Membrana , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Gana , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Feminino , Adulto , Masculino , Adolescente , Adulto Jovem , Criança , Variação Genética , Pré-Escolar , Pessoa de Meia-Idade , Análise de Sequência de DNA , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase , Variação Antigênica , DNA de Protozoário/genética
8.
EMBO Mol Med ; 15(6): e17454, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37082831

RESUMO

Human monoclonal antibodies (mAbs) against the central repeat and junction domain of Plasmodium falciparum circumsporozoite protein (PfCSP) have been studied extensively to guide malaria vaccine design compared to antibodies against the PfCSP C terminus. Here, we describe the molecular characteristics and protective potential of 73 germline and mutated human mAbs against the highly immunogenic PfCSP C-terminal domain. Two mAbs recognized linear epitopes in the C-terminal linker with sequence similarity to repeat and junction motifs, whereas all others targeted conformational epitopes in the α-thrombospondin repeat (α-TSR) domain. Specificity for the polymorphic Th2R/Th3R but not the conserved RII+/CS.T3 region in the α-TSR was associated with IGHV3-21/IGVL3-21 or IGLV3-1 gene usage. Although the C terminus specific mAbs showed signs of more efficient affinity maturation and class-switching compared to anti-repeat mAbs, live sporozoite binding and inhibitory activity was limited to a single C-linker reactive mAb with cross-reactivity to the central repeat and junction. The data provide novel insights in the human anti-C-linker and anti-α-TSR antibody response that support exclusion of the PfCSP C terminus from malaria vaccine designs.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Formação de Anticorpos , Epitopos , Vacinas Antimaláricas/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
9.
Front Cell Infect Microbiol ; 12: 901253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782147

RESUMO

Malaria, an infection caused by apicomplexan parasites of the genus Plasmodium, continues to exact a significant toll on public health with over 200 million cases world-wide, and annual deaths in excess of 600,000. Considerable progress has been made to reduce malaria burden in endemic countries in the last two decades. However, parasite and mosquito resistance to frontline chemotherapies and insecticides, respectively, highlights the continuing need for the development of safe and effective vaccines. Here we describe the development of recombinant human antibodies to three target proteins from Plasmodium falciparum: reticulocyte binding protein homologue 5 (PfRH5), cysteine-rich protective antigen (PfCyRPA), and circumsporozoite protein (PfCSP). All three proteins are key targets in the development of vaccines for blood-stage or pre-erythrocytic stage infections. We have developed potent anti-PfRH5, PfCyRPA and PfCSP monoclonal antibodies that will prove useful tools for the standardisation of assays in preclinical research and the assessment of these antigens in clinical trials. We have generated some very potent anti-PfRH5 and anti-PfCyRPA antibodies with some clones >200 times more potent than the polyclonal anti-AMA-1 antibodies used for the evaluation of blood stage antigens. While the monoclonal and polyclonal antibodies are not directly comparable, the data provide evidence that these new antibodies are very good at blocking invasion. These antibodies will therefore provide a valuable resource and have potential as biological standards to help harmonise pre-clinical malaria research.


Assuntos
Anticorpos Monoclonais , Plasmodium falciparum , Animais , Anticorpos Antiprotozoários , Proteínas de Transporte , Eritrócitos , Humanos
10.
Front Immunol ; 13: 1006716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389797

RESUMO

Background: While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods: Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results: Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion: Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Criança , Lactente , Animais , Feminino , Humanos , Masculino , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Esporozoítos , Malária/tratamento farmacológico
11.
Front Immunol ; 13: 1005476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248835

RESUMO

The Malaria Vaccine Technology Roadmap 2013 (World Health Organization) aims to develop safe and effective vaccines by 2030 that will offer at least 75% protective efficacy against clinical malaria and reduce parasite transmission. Here, we demonstrate a highly effective multistage vaccine against both the pre-erythrocytic and sexual stages of Plasmodium falciparum that protects and reduces transmission in a murine model. The vaccine is based on a viral-vectored vaccine platform, comprising a highly-attenuated vaccinia virus strain, LC16m8Δ (m8Δ), a genetically stable variant of a licensed and highly effective Japanese smallpox vaccine LC16m8, and an adeno-associated virus (AAV), a viral vector for human gene therapy. The genes encoding P. falciparum circumsporozoite protein (PfCSP) and the ookinete protein P25 (Pfs25) are expressed as a Pfs25-PfCSP fusion protein, and the heterologous m8Δ-prime/AAV-boost immunization regimen in mice provided both 100% protection against PfCSP-transgenic P. berghei sporozoites and up to 100% transmission blocking efficacy, as determined by a direct membrane feeding assay using parasites from P. falciparum-positive, naturally-infected donors from endemic settings. Remarkably, the persistence of vaccine-induced immune responses were over 7 months and additionally provided complete protection against repeated parasite challenge in a murine model. We propose that application of the m8Δ/AAV malaria multistage vaccine platform has the potential to contribute to the landmark goals of the malaria vaccine technology roadmap, to achieve life-long sterile protection and high-level transmission blocking efficacy.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Antiprotozoários , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas de Protozoários/genética
12.
Parasite Epidemiol Control ; 18: e00264, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35959316

RESUMO

Background: In south-eastern Tanzania where insecticide-treated nets have been widely used for >20 years, malaria transmission has greatly reduced but remains highly heterogenous over small distances. This study investigated the seasonal prevalence of Plasmodium sporozoite infections in the two main malaria vector species, Anopheles funestus and Anopheles arabiensis for 34 months, starting January 2018 to November 2020. Methods: Adult mosquitoes were collected using CDC-light traps and Prokopack aspirators inside local houses in Igumbiro and Sululu villages, where earlier surveys had found very high densities of An. funestus. Collected females were sorted by taxa, and the samples examined using ELISA assays for detecting Plasmodium circumsporozoite protein in their salivary glands. Results: Of 7859 An. funestus tested, 4.6% (n = 365) were positive for Pf sporozoites in the salivary glands. On the contrary, only 0.4% (n = 9) of the 2382 An. arabiensis tested were positive. The sporozoite prevalence did not vary significantly between the villages or seasons. Similarly, the proportions of parous females of either species were not significantly different between the two villages (p > 0.05) but was slightly higher in An. funestus (0.50) than in An. arabiensis (0.42). Analysis of the 2020 data determined that An. funestus contributed 97.7% of all malaria transmitted in households in these two villages. Conclusions: In contexts where individual vector species mediate most of the pathogen transmission, it may be most appropriate to pursue a species-focused approach to better understand the ecology of the dominant vectors and target them with effective interventions to suppress transmission. Despite the ongoing efforts on tackling malaria in the two study villages, there is still persistently high Plasmodium infection prevalence in local populations of An. funestus, which now carry ~97% of all malaria infections and mediates intense year-round transmission. Further reduction in malaria burden in these or other similar settings requires effective targeting of An. funestus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA