Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 230(2): 497-504, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38874098

RESUMO

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Coinfection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G, K540E, and A581G) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in 2 previously little-studied countries.


Assuntos
Antimaláricos , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Refugiados , Humanos , Uganda/epidemiologia , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Prevalência , Pré-Escolar , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Feminino , Masculino , Criança , Proteínas de Protozoários/genética , Lactente , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Sudão/epidemiologia , Biomarcadores/sangue , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Parasitemia/epidemiologia , Parasitemia/tratamento farmacológico , Plasmodium malariae/genética , Plasmodium malariae/efeitos dos fármacos
2.
Drug Dev Res ; 85(5): e22233, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39030842

RESUMO

Malaria is an intracellular protozoan parasitic disease caused by Plasmodium species with significant morbidity and mortality in endemic regions. The complex lifecycle of the parasite and the emergence of drug-resistant Plasmodium falciparum have hampered the efficacy of current anti-malarial agents. To circumvent this situation, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 26 hybrid compounds containing the three privileged bioactive scaffolds (sulfonamide, chalcone, and nitro group) with synergistic and multitarget action. These three parent scaffolds exhibit divergent activities, such as antibacterial, anti-malarial, anti-fungal, anti-inflammatory, and anticancer. All the synthesised compounds were characterised using various spectroscopic techniques. The in vitro blood-stage inhibitory activity of 26 hybrid compounds was evaluated against mixed-stage culture (asynchronize) of human malarial parasite P. falciparum, Pf 3D7 at different concentrations ranging from 25.0 µg/mL to 0.78 µg/mL using SYBR 1 green assay, with IC50 values determined after 48 h of treatment based on the drug-response curves. Two potent compounds (11 and 10), with 2-Br and 2,6-diCl substitutions, showed pronounced activity with IC50 values of 5.4 µg/mL and 5.6 µg/mL, whereas others displayed varied activity with IC50 values ranging from 7.0 µg/mL to 22.0 µg/mL. Both 11 and 10 showed greater susceptibility towards mature-stage trophozoites than ring-stage parasites. The hemolytic and in vitro cytotoxicity assays revealed that compounds 11 and 10 did not cause any toxic effects on host red blood cells (uninfected), human-derived Mo7e cells, and murine-derived BA/F3 cells. The in vitro observations are consistent with the in silico studies using P. falciparum-dihydrofolate reductase, where 11 and 10 showed a binding affinity of -10.4 Kcal/mol. This is the first report of the hybrid scaffold, 4-nitrobenzenesulfonamide chalcones, demonstrating its potential as an anti-plasmodial agent.


Assuntos
Antimaláricos , Chalconas , Desenho de Fármacos , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Humanos , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Simulação por Computador , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo
3.
Malar J ; 22(1): 375, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072967

RESUMO

BACKGROUND: Resistance against artemisinin-based combination therapy is one of the challenges to malaria control and elimination globally. Mutations in different genes (Pfdhfr, Pfdhps, Pfk-13 and Pfmdr1) confer resistance to artesunate and sulfadoxine-pyrimethamine (AS + SP) were analysed from Mandla district, Madhya Pradesh, to assess the effectiveness of the current treatment regimen against uncomplicated Plasmodium falciparum. METHODS: Dried blood spots were collected during the active fever survey and mass screening and treatment activities as part of the Malaria Elimination Demonstration Project (MEDP) from 2019 to 2020. Isolated DNA samples were used to amplify the Pfdhfr, Pfdhps, Pfk13 and Pfmdr1 genes using nested PCR and sequenced for mutation analysis using the Sanger sequencing method. RESULTS: A total of 393 samples were subjected to PCR amplification, sequencing and sequence analysis; 199, 215, 235, and 141 samples were successfully sequenced for Pfdhfr, Pfdhps, Pfk13, Pfmdr1, respectively. Analysis revealed that the 53.3% double mutation (C59R, S108N) in Pfdhfr, 89.3% single mutation (G437A) in Pfdhps, 13.5% single mutants (N86Y), and 51.1% synonymous mutations in Pfmdr1 in the study area. Five different non-synonymous and two synonymous point mutations found in Pfk13, which were not associated to artemisinin resistance. CONCLUSION: The study has found that mutations linked to SP resistance are increasing in frequency, which may reduce the effectiveness of this drug as a future partner in artemisinin-based combinations. No evidence of mutations linked to artemisinin resistance in Pfk13 was found, suggesting that parasites are sensitive to artemisinin derivatives in the study area. These findings are a baseline for routine molecular surveillance to proactively identify the emergence and spread of artemisinin-resistant parasites.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Biomarcadores , Resistência a Medicamentos/genética , Índia , Combinação de Medicamentos , Malária Falciparum/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
4.
Malar J ; 22(1): 240, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612601

RESUMO

BACKGROUND: Artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) are the currently recommended first-and second-line therapies for uncomplicated Plasmodium falciparum infections in Chad. This study assessed the efficacy of these artemisinin-based combinations, proportion of day 3 positive patients, proportions of molecular markers associated with P. falciparum resistance to anti-malarial drugs and variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single-arm prospective study assessing the efficacy of AS-AQ and AL at three sites (Doba, Kelo and Koyom) was conducted between November 2020 to January 2021. Febrile children aged 6 to 59 months with confirmed uncomplicated P. falciparum infection were enrolled sequentially first to AS-AQ and then AL at each site and followed up for 28 days. The primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples collected on day 0 were analysed for mutations in pfkelch13, pfcrt, pfmdr-1, pfdhfr, pfdhps genes and deletions in pfhrp2/pfhrp3 genes. RESULTS: By the end of 28-day follow-up, per-protocol PCR corrected ACPR of 97.8% (CI 95% 88.2-100) in Kelo and 100% in Doba and Kayoma were observed among AL treated patients. For ASAQ, 100% ACPR was found in all sites. All, but one patient, did not have parasites detected on day 3. Out of the 215 day 0 samples, 96.7% showed pfkelch13 wild type allele. Seven isolates carried nonsynonymous mutations not known to be associated artemisinin partial resistance (ART-R). Most of samples had a pfcrt wild type allele (79% to 89%). The most prevalent pfmdr-1 allele detected was the single mutant 184F (51.2%). For pfdhfr and pfdhps mutations, the quintuple mutant allele N51I/C59R/S108N + G437A/540E responsible for SP treatment failures in adults and children was not detected. Single deletion in the pfhrp2 and pfhrp3 gene were detected in 10/215 (4.7%) and 2/215 (0.9%), respectively. Dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, were observed in 5/215 (2.3%) isolates. CONCLUSION: The results of this study confirm that AS-AQ and AL treatments are highly efficacious in study areas in Chad. The absence of known pfkelch13 mutations in the study sites and the high parasite clearance rate at day 3 suggest the absence of ART-R. The absence of pfdhfr/pfdhps quintuple or sextuple (quintuple + 581G) mutant supports the continued use of SP for IPTp during pregnancy. The presence of parasites with dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, warrants the continued surveillance. Trial registration ACTRN12622001476729.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Adulto , Feminino , Gravidez , Humanos , Artesunato , Antimaláricos/uso terapêutico , Amodiaquina/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Chade , Estudos Prospectivos , Artemeter , Malária Falciparum/tratamento farmacológico , Artemisininas/uso terapêutico
5.
J Infect Dis ; 225(4): 696-704, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460932

RESUMO

BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors pyrimethamine and cycloguanil (the active metabolite of proguanil) have important roles in malaria chemoprevention, but drug resistance challenges their efficacies. A new compound, P218, was designed to overcome resistance, but drug-susceptibility data for P falciparum field isolates are limited. METHODS: We studied ex vivo PfDHFR inhibitor susceptibilities of 559 isolates from Tororo and Busia districts, Uganda, from 2016 to 2020, sequenced 383 isolates, and assessed associations between genotypes and drug-susceptibility phenotypes. RESULTS: Median half-maximal inhibitory concentrations (IC50s) were 42 100 nM for pyrimethamine, 1200 nM for cycloguanil, 13000 nM for proguanil, and 0.6 nM for P218. Among sequenced isolates, 3 PfDHFR mutations, 51I (100%), 59R (93.7%), and 108N (100%), were very common, as previously seen in Uganda, and another mutation, 164L (12.8%), had moderate prevalence. Increasing numbers of mutations were associated with decreasing susceptibility to pyrimethamine, cycloguanil, and P218, but not proguanil, which does not act directly against PfDHFR. Differences in P218 susceptibilities were modest, with median IC50s of 1.4 nM for parasites with mixed genotype at position 164 and 5.7 nM for pure quadruple mutant (51I/59R/108N/164L) parasites. CONCLUSIONS: Resistance-mediating PfDHFR mutations were common in Ugandan isolates, but P218 retained excellent activity against mutant parasites.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum , Polimorfismo Genético , Proguanil/farmacologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Uganda
6.
J Infect Dis ; 224(9): 1605-1613, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33684211

RESUMO

Mutations in the Plasmodium falciparum genes Pfdhfr and Pfdhps, particularly the sextuple mutant haplotype threatens the antimalarial effectiveness of sulfadoxine-pyrimethamine (SP) as intermittent preventive treatment during pregnancy (IPTp). To explore the impact of sextuple mutant haplotype infections on outcome measures after provision of IPTp with SP, we monitored birth outcomes in women followed up from before conception or from the first trimester until delivery. Women infected with sextuple haplotypes, in the early second trimester specifically, delivered newborns with a lower birth weight compared with women who did not have malaria during pregnancy (difference, -267 g; 95% confidence interval, -454 to -59; P = .01) and women infected with less SP-resistant haplotypes (-461 g; -877 to -44; P = .03). Thus, sextuple haplotype infections seem to affect the effectiveness of SP for IPTp and directly affect birth outcome by lowering birth weight. Close monitoring and targeted malaria control during early pregnancy is therefore crucial to improving birth outcomes.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Sulfadoxina/uso terapêutico , Adulto , Antimaláricos/farmacologia , Peso ao Nascer , Combinação de Medicamentos , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Feminino , Humanos , Recém-Nascido , Masculino , Plasmodium falciparum/genética , Gravidez , Complicações Parasitárias na Gravidez/diagnóstico , Complicações Parasitárias na Gravidez/tratamento farmacológico , Resultado da Gravidez , Segundo Trimestre da Gravidez , Pirimetamina/uso terapêutico
7.
J Infect Dis ; 223(6): 985-994, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33146722

RESUMO

BACKGROUND: In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS: Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS: Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS: We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs.


Assuntos
Aminoquinolinas , Antimaláricos , Artemisininas , Resistência a Medicamentos , Antagonistas do Ácido Fólico , Plasmodium falciparum/efeitos dos fármacos , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Feminino , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Gravidez , Prevalência , Uganda/epidemiologia
8.
Malar J ; 20(1): 152, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731134

RESUMO

BACKGROUND: Anti-malarial drug resistance remains a key concern for the global fight against malaria. In Ghana sulfadoxine-pyrimethamine (SP) is used for intermittent preventive treatment of malaria in pregnancy and combined with amodiaquine for Seasonal Malaria Chemoprevention (SMC) during the high malaria season. Thus, surveillance of molecular markers of SP resistance is important to guide decision-making for these interventions in Ghana. METHODS: A total of 4469 samples from uncomplicated malaria patients collected from 2009 to 2018 was submitted to the Wellcome Trust Sanger Institute, UK for DNA sequencing using MiSeq. Genotypes were successfully translated into haplotypes in 2694 and 846 mono infections respectively for pfdhfr and pfdhps genes and the combined pfhdfr/pfdhps genes across all years. RESULTS: At the pfdhfr locus, a consistently high (> 60%) prevalence of parasites carrying triple mutants (IRNI) were detected from 2009 to 2018. Two double mutant haplotypes (NRNI and ICNI) were found, with haplotype NRNI having a much higher prevalence (average 13.8%) than ICNI (average 3.2%) across all years. Six pfdhps haplotypes were detected. Of these, prevalence of five fluctuated in a downward trend over time from 2009 to 2018, except a pfdhps double mutant (AGKAA), which increased consistently from 2.5% in 2009 to 78.2% in 2018. Across both genes, pfdhfr/pfdhps combined triple (NRNI + AAKAA) mutants were only detected in 2009, 2014, 2015 and 2018, prevalence of which fluctuated between 3.5 and 5.5%. The combined quadruple (IRNI + AAKAA) genotype increased in prevalence from 19.3% in 2009 to 87.5% in 2011 before fluctuating downwards to 19.6% in 2018 with an average prevalence of 37.4% within the nine years. Prevalence of parasites carrying the quintuple (IRNI + AGKAA or SGEAA) mutant haplotypes, which are highly refractory to SP increased over time from 14.0% in 2009 to 89.0% in 2016 before decreasing to 78.9 and 76.6% in 2017 and 2018 respectively. Though quintuple mutants are rising in prevalence in both malaria seasons, together these combined genotypes vary significantly within season but not between seasons. CONCLUSIONS: Despite high prevalence of pfdhfr triple mutants and combined pfdhfr/pfdhps quadruple and quintuple mutants in this setting SP may still be efficacious. These findings are significant as they highlight the need to continuously monitor SP resistance, particularly using deep targeted sequencing to ascertain changing resistance patterns.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Variação Genética , Genótipo , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Adolescente , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Variação Genética/efeitos dos fármacos , Gana , Humanos , Masculino , Plasmodium falciparum/efeitos dos fármacos , Estações do Ano , Adulto Jovem
9.
Malar J ; 20(1): 72, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546703

RESUMO

BACKGROUND: In 2004, in response to high levels of treatment failure associated with sulfadoxine-pyrimethamine (SP) resistance, Benin changed its first-line malaria treatment from SP to artemisinin-based combination therapy for treatment of uncomplicated Plasmodium falciparum malaria. Resistance to SP is conferred by accumulation of single nucleotide polymorphisms (SNPs) in P. falciparum genes involved in folate metabolism, dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. Because SP is still used for intermittent preventive treatment in pregnant women (IPTp) and seasonal malaria chemoprevention (SMCP) in Benin, the prevalence of Pfdhfr and Pfdhps SNPs in P. falciparum isolates collected in 2017 were investigated. METHODS: This study was carried out in two sites where the transmission of P. falciparum malaria is hyper-endemic: Klouékanmey and Djougou. Blood samples were collected from 178 febrile children 6-59 months old with confirmed uncomplicated P. falciparum malaria and were genotyped for SNPs associated with SP resistance. RESULTS: The Pfdhfr triple mutant IRN (N51I, C59R, and S108N) was the most prevalent (84.6%) haplotype and was commonly found with the Pfdhps single mutant A437G (50.5%) or with the Pfdhps double mutant S436A and A437G (33.7%). The quintuple mutant, Pfdhfr IRN/Pfdhps GE (A437G and K540E), was rarely observed (0.8%). The A581G and A613S mutant alleles were found in 2.6 and 3.9% of isolates, respectively. Six isolates (3.9%) were shown to harbour a mutation at codon I431V, recently identified in West African parasites. CONCLUSIONS: This study showed that Pfdhfr triple IRN mutants are near fixation in this population and that the highly sulfadoxine-resistant Pfdhps alleles are not widespread in Benin. These data support the continued use of SP for chemoprevention in these study sites, which should be complemented by periodic nationwide molecular surveillance to detect emergence of resistant genotypes.


Assuntos
Antimaláricos/farmacologia , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Sulfadoxina/farmacologia , Alelos , Benin/epidemiologia , Pré-Escolar , Di-Hidropteroato Sintase/metabolismo , Combinação de Medicamentos , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Plasmodium falciparum/enzimologia , Prevalência , Pirimetamina/farmacologia
10.
J Biochem Mol Toxicol ; 35(9): e22860, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34313355

RESUMO

The present manuscript deals with the development of novel p-aminobenzoic acid (PABA) associated 1,3,5-triazine derivatives as antimalarial agents. The molecules were developed via microwave-assisted synthesis and structures of compounds were ascertained via numerous analytical and spectroscopic techniques. The synthesized compounds were also subjected to ADMET analysis. In a docking analysis, the title compounds showed high and diverse binding affinities towards wild (-162.45 to -369.38 kcal/mol) and quadruple mutant (-165.36 to -209.47 kcal/mol) Pf-DHFR-TS via interacting with Phe58, Arg59, Ser111, Ile112, Phe116. The in vitro antimalarial activity suggested that compounds 4e, 4b, and 4h showed IC50 ranging from 4.18 to 8.66 µg/ml against the chloroquine-sensitive (3D7) strain of Plasmodium falciparum. Moreover, compounds 4g, 4b, 4e, and 4c showed IC50 ranging from 8.12 to 12.09 µg/ml against chloroquine-resistant (Dd2) strain. In conclusion, our study demonstrated the development of hybrid PABA substituted 1,3,5-triazines as a novel class of Pf-DHFR inhibitor for antimalarial drug discovery.


Assuntos
Antimaláricos , Micro-Ondas , Plasmodium falciparum/crescimento & desenvolvimento , Triazinas , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Humanos , Triazinas/síntese química , Triazinas/química , Triazinas/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-32179528

RESUMO

The continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRN I- A/FG K GS/Tpfdhfr/pfdhps haplotypes, including the pfdhps A581G and A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%) compared to those of first antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%; P = 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance of additional mutations associated with increased SP resistance as well as emergence of resistance against artemisinin derivatives.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Preparações Farmacêuticas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos/genética , Feminino , Gana , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Gravidez , Gestantes , Proteínas de Protozoários/uso terapêutico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética
12.
Malar J ; 19(1): 107, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127009

RESUMO

BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples. METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated. RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification. CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Camboja/epidemiologia , DNA de Protozoário/genética , Teste em Amostras de Sangue Seco , Combinação de Medicamentos , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Mutação , Prevalência , Tailândia/epidemiologia
13.
Malar J ; 19(1): 190, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448228

RESUMO

BACKGROUND: Prevention and treatment of malaria during pregnancy is crucial in dealing with maternal mortality and adverse fetal outcomes. The World Health Organization recommendation to treat all pregnant women with sulfadoxine-pyrimethamine (SP) through antenatal care structures was implemented in Kenya in the year 1998, but concerns about its effectiveness in preventing malaria in pregnancy has arisen due to the spread of SP resistant parasites. This study aimed to determine the prevalence of SP resistance markers in Plasmodium falciparum parasites isolated from pregnant women seeking antenatal care at Msambweni County Referral Hospital, located in coastal Kenya, between the year 2013 and 2015. METHODS: This hospital-based study included 106 malaria positive whole blood samples for analysis of SP resistance markers within the Pfdhfr gene (codons 51, 59 and 108) and Pfdhps gene (codons 437 and 540). The venous blood collected from all pregnant women was tested for malaria via light microscopy, then the malaria positive samples were separated into plasma and red cells and stored in a - 86° freezer for further studies. Archived red blood cells were processed for molecular characterization of SP resistance markers within the Pfdhfr and Pfdhps genes using real time PCR platform and Sanger sequencing. RESULTS: All samples had at least one mutation in the genes associated with drug resistance; polymorphism prevalence of Pfdhfr51I, 59R and 108N was at 88.7%, 78.3% and 93.4%, respectively, while Pfdhps polymorphism accounted for 94.3% and 91.5% at 437G and 540E, respectively. Quintuple mutations (at all the five codons) conferring total SP resistance had the highest prevalence of 85.8%. Quadruple mutations were observed at a frequency of 10.4%, and 24.5% had a mixed outcome of both wildtype and mutant genotypes in the genes of interest. CONCLUSION: The data suggest a high prevalence of P. falciparum genetic variations conferring resistance to SP among pregnant women, which may explain reduced efficacy of IPTp treatment in Kenya. There is need for extensive SP resistance profiling in Kenya to inform IPTp drug choices for successful malaria prevention during pregnancy.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Adulto , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Feminino , Marcadores Genéticos , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Mutação , Gravidez , Prevalência , Proteínas de Protozoários/metabolismo , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/metabolismo , Adulto Jovem
14.
Malar J ; 19(1): 304, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854686

RESUMO

BACKGROUND: Currently, artemisinin-based combination therapy (ACT) is the first-line anti-malarial treatment in malaria-endemic areas. However, resistance in Plasmodium falciparum to artemisinin-based combinations emerging in the Greater Mekong Sub-region is a major problem hindering malaria elimination. To continuously monitor the potential spread of ACT-resistant parasites, this study assessed the efficacy of artemether-lumefantrine (AL) for falciparum malaria in western Myanmar. METHODS: Ninety-five patients with malaria symptoms from Paletwa Township, Chin State, Myanmar were screened for P. falciparum infections in 2015. After excluding six patients with a parasite density below 100 or over 150,000/µL, 41 P. falciparum patients were treated with AL and followed for 28 days. Molecular markers associated with resistance to 4-amino-quinoline drugs (pfcrt and pfmdr1), antifolate drugs (pfdhps and pfdhfr) and artemisinin (pfk13) were genotyped to determine the prevalence of mutations associated with anti-malarial drug resistance. RESULTS: For the 41 P. falciparum patients (27 children and 14 adults), the 28-day AL therapeutic efficacy was 100%, but five cases (12.2%) were parasite positive on day 3 by microscopy. For the pfk13 gene, the frequency of NN insert after the position 136 was 100% in the day-3 parasite-positive group as compared to 50.0% in the day-3 parasite-negative group, albeit the difference was not statistically significant (P = 0.113). The pfk13 K189T mutation (10.0%) was found in Myanmar for the first time. The pfcrt K76T and A220S mutations were all fixed in the parasite population. In pfmdr1, the Y184F mutation was present in 23.3% of the parasite population, and found in both day-3 parasite-positive and -negative parasites. The G968A mutation of pfmdr1 gene was first reported in Myanmar. Prevalence of all the mutations in pfdhfr and pfdhps genes assessed was over 70%, with the exception of the pfdhps A581G mutation, which was 3.3%. CONCLUSIONS: AL remained highly efficacious in western Myanmar. Pfk13 mutations associated with artemisinin resistance were not found. The high prevalence of mutations in pfcrt, pfdhfr and pfdhps suggests high-degree resistance to chloroquine and antifolate drugs. The pfmdr1 N86/184F/D1246 haplotype associated with selection by AL in Africa reached > 20% in this study. The detection of > 10% patients who were day-3 parasite-positive after AL treatment emphasizes the necessity of continuously monitoring ACT efficacy in western Myanmar.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Adolescente , Adulto , Criança , Feminino , Humanos , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Mianmar , Plasmodium falciparum/efeitos dos fármacos , Adulto Jovem
15.
Malar J ; 19(1): 290, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795288

RESUMO

BACKGROUND: Artesunate plus sulfadoxine-pyrimethamine (ASP) is first-line treatment for uncomplicated Plasmodium falciparum malaria in most of India, except for six North-eastern provinces where treatment failure rates were high. In Ujjain, central India, the frequency of mutations associated with increased drug tolerance, but not overt resistance to sulfadoxine and pyrimethamine were 9% and > 80%, respectively, in 2009 and 2010, just prior to the introduction of ASP. The frequency of drug resistance associated mutations in Ujjain in 2015-2016 after 3-4 years of ASP use, are reported. METHODS: Blood samples from patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons pfdhfr 16-185, pfdhps 436-632 and K13 407-689 were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism. RESULTS: Sulfadoxine-pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 100/104 (96%) and 87/91 (96%) samples, respectively. Pfdhps 437G was found in 10/105 (10%) samples. Double mutant pfdhfr 59R + 108 N were found in 75/81 (93%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/78 (8%) samples. Chloroquine-resistance-associated pfcrt 76T was found in 102/102 (100%). Pfmdr1 N86 and 86Y were identified in 83/115 (72%) and 32/115 (28%) samples, respectively. CONCLUSION: The frequency of P. falciparum with reduced susceptibility to sulfadoxine-pyrimethamine remained high, but did not appear to have increased significantly since the introduction of ASP. No polymorphisms in K13 associated with decreased artemisinin susceptibility were found. ASP probably remained effective, supporting continued ASP use.


Assuntos
Antimaláricos/farmacologia , Artesunato/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Combinação de Medicamentos , Humanos , Índia , Lactente , Malária Falciparum/prevenção & controle , Pessoa de Meia-Idade , Mutação , Plasmodium falciparum/efeitos dos fármacos , Adulto Jovem
16.
Malar J ; 19(1): 78, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070355

RESUMO

BACKGROUND: Plasmodium falciparum malaria is a public health problem worldwide. Malaria treatment policy has faced periodic changes due to emergence of drug resistant parasites. In Sudan chloroquine has been replaced by artesunate and sulfadoxine/pyrimethamine (AS/SP) in 2005 and to artemether-lumefantrine (AL) in 2017, due to the development of drug resistance. Different molecular markers have been used to monitor the status of drug resistant P. falciparum. This study aimed to determine the frequency of malaria drug resistance molecular markers in Southeast Sudan. METHODS: The samples of this study were day zero dried blood spot samples collected from efficacy studies in the Blue Nile State from November 2015 to January 2016. A total of 130 samples were amplified and sequenced using illumina Miseq platform. The molecular markers included were Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfk13, exonuclease and artemisinin resistant (ART-R) genetic background (Pfmdr2, ferroredoxine, Pfcrt and Pfarps10). RESULTS: Resistance markers for chloroquine were detected in 25.8% of the samples as mutant haplotype Pfcrt 72-76 CVIET and 21.7% Pfmdr1 86Y. Pfdhfr mutations were detected in codons 51, 59 and 108. The ICNI double-mutant haplotype was the most prevalent (69%). Pfdhps mutations were detected in codons 436, 437, 540, 581 and 613. The SGEGA triple-mutant haplotype was the most prevalent (43%). In Pfdhfr/Pfdhps combined mutation, quintuple mutation ICNI/SGEGA is the most frequent one (29%). Six of the seven treatment failure samples had quintuple mutation and the seventh was quadruple. This was significantly higher from the adequately responsive group (P < 0.01). Pfk13 novel mutations were found in 7 (8.8%) samples, which were not linked to artemisinin resistance. Mutations in ART-R genetic background genes ranged from zero to 7%. Exonuclease mutation was not detected. CONCLUSION: In this study, moderate resistance to chloroquine and high resistance to SP was observed. Novel mutations of Pfk13 gene not linked to treatment failure were described. There was no resistance to piperaquine the partner drug of dihydroartemisinin/piperaquine (DHA-PPQ).


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Marcadores Genéticos/genética , Humanos , Plasmodium falciparum/genética , Sudão
17.
Malar J ; 19(1): 176, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380999

RESUMO

BACKGROUND: Malaria incidence has reached staggering numbers in Venezuela. Commonly, Bolívar State accounted for approximately 70% of the country cases every year. Most cases cluster in the Sifontes municipality, a region characterized by an extractive economy, including gold mining. An increase in migration to Sifontes, driven by gold mining, fueled a malaria spillover to the rest of the country and the region. Here samples collected in 2018 were compared with a previous study of 2003/2004 to describe changes in the parasites population structures and the frequency of point mutations linked to anti-malarial drugs. METHODS: A total of 88 Plasmodium falciparum and 94 Plasmodium vivax isolates were collected in 2018 and compared with samples from 2003/2004 (106 P. falciparum and 104 P. vivax). For P. falciparum, mutations linked to drug resistance (Pfdhfr, Pfdhps, and Pfcrt) and the Pfk13 gene associated with artemisinin delayed parasite clearance, were analysed. To estimate the multiplicity of infection (MOI), and perform P. falciparum and P. vivax population genetic analyses, the parasites were genotyped by using eight standardized microsatellite loci. RESULTS: The P. falciparum parasites are still harbouring drug-resistant mutations in Pfdhfr, Pfdhps, and Pfcrt. However, there was a decrease in the frequency of highly resistant Pfdhps alleles. Mutations associated with artemisinin delayed parasite clearance in the Pfk13 gene were not found. Consistent with the increase in transmission, polyclonal infections raised from 1.9% in 2003/2004 to 39% in 2018 in P. falciparum and from 16.3 to 68% in P. vivax. There is also a decrease in linkage disequilibrium. Bayesian clustering yields two populations linked to the time of sampling, showing that the parasite populations temporarily changed. However, the samples from 2003/2004 and 2018 have several alleles per locus in common without sharing multi-locus genotypes. CONCLUSIONS: The frequency of mutations linked with drug resistance in P. falciparum shows only changes in Pfdhps. Observations presented here are consistent with an increase in transmission from the previously circulating parasites. Following populations longitudinally, using molecular surveillance, provides valuable information in cases such as Venezuela with a fluid malaria situation that is affecting the regional goals toward elimination.


Assuntos
Resistência a Medicamentos/genética , Genes de Protozoários/genética , Malária Falciparum/transmissão , Malária Vivax/transmissão , Plasmodium falciparum/genética , Plasmodium vivax/genética , Antimaláricos/farmacologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Repetições de Microssatélites/genética , Mutação Puntual , Prevalência , Venezuela/epidemiologia
18.
BMC Infect Dis ; 20(1): 530, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698764

RESUMO

BACKGROUND: Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) mutations compromise the effectiveness of sulfadoxine-pyrimethamine (SP) for treatment of uncomplicated malaria, and are likely to impair the efficiency of intermittent preventive treatment during pregnancy (IPTp). This study was conducted to determine the level of Pfdhfr-Pfdhps mutations, a decade since SP was limited for IPTp use in pregnant women in Tanzania. METHODS: P. falciparum genomic DNA was extracted from dried blood spots prepared from a finger prick. Extracted DNA were sequenced using a single MiSeq lane by combining all PCR products. Genotyping of Pfdhfr and Pfdhps mutations were done using bcftools whereas custom scripts were used to filter and translate genotypes into SP resistance haplotypes. RESULTS: The Pfdhfr was analyzed from 445 samples, the wild type (WT) Pfdhfr haplotype NCSI was detected in 6 (1.3%) samples. Triple PfdhfrIRNI (mutations are bolded and underlined) haplotype was dominant, contributing to 84% (number [n] = 374) of haplotypes while 446 samples were studied for Pfdhps, WT for Pfdhps (SAKAA) was found in 6.7% (n = 30) in samples. Double Pfdhps haplotype (SGEAA) accounted for 83% of all mutations at Pfdhps gene. Of 447 Pfdhfr-Pfdhps combined genotypes, only 0.9% (n = 4) samples contained WT gene (SAKAA-NCSI). Quintuple (five) mutations, SGEAA-IRNI accounted for 71.4% (n = 319) whereas 0.2% (n = 1) had septuple (seven) mutations (AGKGS-IRNI). The overall prevalence of Pfdhfr K540E was 90.4% (n = 396) while Pfdhps A581G was 1.1% (n = 5). CONCLUSIONS: This study found high prevalence of Pfdhfr-Pfdhps quintuple and presence of septuple mutations. Mutations at Pfdhfr K540E and Pfdhps A581G, major predictors for IPTp-SP failure were within the recommended WHO range. Abandonment of IPTp-SP is recommended in settings where the Pfdhfr K540E prevalence is > 95% and Pfdhps A581G is > 10% as SP is likely to be not effective. Nonetheless, saturation in Pfdhfr and Pfdhps haplotypes is alarming, a search for alternative antimalarial drug for IPTp in the study area is recommended.


Assuntos
Antimaláricos/uso terapêutico , Di-Hidropteroato Sintase/genética , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mutação , Plasmodium falciparum/genética , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/prevenção & controle , Proteínas de Protozoários/genética , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Combinação de Medicamentos , Resistência Microbiana a Medicamentos/genética , Feminino , Haplótipos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/enzimologia , Reação em Cadeia da Polimerase , Gravidez , Prevalência , Tanzânia/epidemiologia , Resultado do Tratamento
19.
Artigo em Inglês | MEDLINE | ID: mdl-31358591

RESUMO

Angola was the main origin country for the imported malaria in Henan Province, China. Antimalarial drug resistance has posed a threat to the control and elimination of malaria. Several molecular markers were confirmed to be associated with the antimalarial drug resistance, such as pfcrt, pfmdr1, pfdhfr, pfdhps, and K13. This study evaluated the drug resistance of the 180 imported Plasmodium falciparum isolates from Angola via nested PCR using Sanger sequencing. The prevalences of pfcrt C72V73M74N75K76, pfmdr1 N86Y184S1034N1042D1246, pfdhfr A16N51C59S108D139I164, and pfdhps S436A437A476K540A581 were 69.4%, 59.9%, 1.3% and 6.3%, respectively. Three nonsynonymous (A578S, M579I, and Q613E) and one synonymous (R471R) mutation of K13 were found, the prevalences of which were 2.5% and 1.3%, respectively. The single nucleotide polymorphisms (SNPs) in pfcrt, pfmdr1, pfdhfr, and pfdhps were generally shown as multiple mutations. The mutant prevalence of pfcrt reduced gradually, but pfdhfr and pfdhps still showed high mutant prevalence, while pfmdr1 was relatively low. The mutation of the K13 gene was rare. Molecular surveillance of artemisinin (ART) resistance will be used as a tool to evaluate the real-time efficacy of the artemisinin-based combination therapies (ACTs) and the ART resistance situation.


Assuntos
Di-Hidropteroato Sintase/genética , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética , Substituição de Aminoácidos , Angola/epidemiologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , China/epidemiologia , Di-Hidropteroato Sintase/metabolismo , Monitoramento Epidemiológico , Expressão Gênica , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Epidemiologia Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Viagem
20.
Artigo em Inglês | MEDLINE | ID: mdl-30803964

RESUMO

We evaluated markers of sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum among 254 returned migrant workers in China from Africa from 2013 to 2016. High prevalences of pfdhfr (97.2%) and pfdhps (96.5%) mutations were observed. The partially resistant genotype was homogeneously distributed in Africa with a modestly high prevalence (48%), whereas the super resistant genotype was only found in West Africa with a very low frequency (1.2%). The findings provided baseline data about the molecular markers of SP resistance.


Assuntos
Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , África , China , Genótipo , Humanos , Malária/parasitologia , Mutação/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA