Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecotoxicology ; 30(1): 31-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33247806

RESUMO

Acute toxicities of chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FLO) and their mixtures on Daphnia magna under two representative temperatures of the aquatic environment (20 and 25 °C) have been examined. Their toxicities depicted with an order of 72-h EC50 values were as follows: CAP > FLO > TAP and CAP ≈ FLO > TAP under 20 and 25 °C, separately. Furthermore, the acute toxicity significantly increased with the rise of temperature from 20 to 25 °C in nearly all separate and mixture phenicol antibiotics. Meanwhile, the most toxic combination under two different temperatures was diverse. The nature of toxicological interactions of phenicol antibiotic mixtures was analyzed by Combination Index (CI) equation. In general, a dual synergism-antagonism effect was dominant in nearly all mixtures at both temperatures. The prediction suitability of Concentration Addition (CA), Independent Action (IA) models, and CI method was compared, suggesting that the CI equation seems to be more appropriate for predicting the toxicity values of phenicol drugs than CA and IA models. In brief, phenicol antibiotic mixtures with temperature variation may pose more significant hazards and risks to aquatic organisms; hence, the environment.


Assuntos
Cloranfenicol/toxicidade , Daphnia/fisiologia , Tianfenicol/análogos & derivados , Poluentes Químicos da Água , Animais , Temperatura , Tianfenicol/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768762

RESUMO

The use of phenicol antibiotics in animals has increased. In recent years, it has been reported that the transferable gene mediates phenicol-oxazolidinone resistance. This study analyzed the prevalence and characteristics of phenicol-oxazolidinone resistance genes in Enterococcus faecalis and Enterococcus faecium isolated from food-producing animals and meat in Korea in 2018. Furthermore, for the first time, we reported the genome sequence of E. faecalis strain, which possesses the phenicol-oxazolidinone resistance gene on both the chromosome and plasmid. Among the 327 isolates, optrA, poxtA, and fexA genes were found in 15 (4.6%), 8 (2.5%), and 17 isolates (5.2%), respectively. Twenty E. faecalis strains carrying resistance genes belonged to eight sequence types (STs), and transferability was found in 17 isolates. The genome sequences revealed that resistant genes were present in the chromosome or plasmid, or both. In strains EFS17 and EFS108, optrA was located downstream of the ermA and ant(9)-1 genes. The strains EFS36 and EFS108 harboring poxtA-encoding plasmid cocarried fexA and cfr(D). These islands also contained IS1216E or the transposon Tn554, enabling the horizontal transfer of the phenicol-oxazolidinone resistance with other antimicrobial-resistant genes. Our results suggest that it is necessary to promote the prudent use of antibiotics through continuous monitoring and reevaluation.


Assuntos
Anti-Infecciosos/farmacologia , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Carne/microbiologia , Oxazolidinonas/farmacologia , Animais , Bovinos/microbiologia , Biologia Computacional , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Análise de Alimentos , Transferência Genética Horizontal , Genes Bacterianos/efeitos dos fármacos , Genoma Bacteriano , Tipagem de Sequências Multilocus , Plasmídeos , República da Coreia , Suínos/microbiologia , Sequenciamento Completo do Genoma
3.
J Antimicrob Chemother ; 70(4): 1031-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25477328

RESUMO

OBJECTIVES: To characterize the chromosomally encoded novel floR gene variant floRv from Stenotrophomonas maltophilia of porcine origin and elucidate the gene order and content of the floRv-flanking regions in an MDR genomic island (GI). METHODS: Whole genome sequencing was used to identify the unknown florfenicol resistance gene in S. maltophilia strain GZP-Sm1. The candidate gene was cloned into pMD19-T and Escherichia coli transformants carrying this vector were tested for phenicol MICs. Flanking sequences of the florfenicol resistance gene were identified by a de novo assembly and a primer walking strategy. RESULTS: GZP-Sm1 carried a floR gene variant, designated floRv. E. coli clones carrying this gene were resistant to chloramphenicol and florfenicol. The deduced 404 amino acid FloRv protein showed 84.1%-91.8% amino acid identity to various FloR proteins. The gene floRv was located in an MDR region within a 40 226 bp GI region. Six resistance genes, including floRv (phenicol resistance), tetR-tetA(A) (tetracycline resistance), strA/strB (streptomycin resistance), sul1 (sulphonamide resistance) and aadA2 (streptomycin/spectinomycin resistance), were located in this MDR region. PCR analysis revealed that the GI was not stable and could be excised from the chromosome as a circular intermediate. CONCLUSIONS: The floRv gene was identified in a porcine S. maltophilia isolate. Six resistance genes including floRv were located in a novel GI. As an opportunistic pathogen in animals and humans, S. maltophilia might act as a resistance gene reservoir in farm environments. Its contribution to the spread of resistance genes to other pathogens should be monitored.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Ilhas Genômicas , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/genética , Tianfenicol/análogos & derivados , Animais , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Análise de Sequência de DNA , Stenotrophomonas maltophilia/isolamento & purificação , Suínos , Doenças dos Suínos/microbiologia , Tianfenicol/farmacologia
4.
Antibiotics (Basel) ; 13(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666987

RESUMO

Oxazolidinone resistance, especially transmissible resistance, is a major public health concern, and the origin of this resistance mechanism is not yet resolved. This study aims to delve into the phylogenetic origin of the transmissible oxazolidinone resistance mechanisms conferring cross-resistance to other drugs of human and veterinary importance. The amino acid sequences of the five cfr ribosomal methylases and optrA and poxtA were used as queries in searches against 219,549 bacterial proteomes in the NCBI RefSeq database. Hits with >40% amino acid identity and >80% query coverage were aligned, and phylogenetic trees were reconstructed. All five cfr genes yielded highly similar trees, with rlmN housekeeping ribosomal methylases located basal to the sister groups of S-adenosyl-methionine-dependent methyltransferases from various Deltaproteobacteria and Actinomycetia, including antibiotic-producing Streptomyces species, and the monophyletic group of cfr genes. The basal branches of the latter contained paenibacilli and other soil bacteria; they then could be split into the clades [cfr(C):cfr(E)] and [[cfr:cfr(B)]:cfr(D)], always with different Bacillaceae in their stems. Lachnospiraceae were encountered in the basal branches of both optrA and poxtA trees. The ultimate origin of the cfr genes is the rlmN housekeeping ribosomal methylases, which evolved into a suicide-avoiding methylase in antibiotic producers; a soil organism (Lachnospiraceae, Paenibacilli) probably acted as a transfer organism into pathogenic bacteria. In the case of optrA, the porcine pathogenic Streptococcus suis was present in all branches, while the proteins closest to poxtA originated from Clostridia.

5.
Microorganisms ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889084

RESUMO

Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.

6.
J Glob Antimicrob Resist ; 24: 363-369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515778

RESUMO

OBJECTIVES: To investigate the distribution and genetic characteristics of linezolid-resistant enterococci. METHODS: Enterococcus faecalis and Enterococcus faecium strains were isolated from pigs, equipment, grounds, and employees of 19 Korean swine farms in 2017. Antimicrobial susceptibility testing was then performed and linezolid resistance genes were detected via PCR. For genetic epidemiological characterization, multilocus sequence typing and whole-genome sequencing data were analysed. RESULTS: Twenty-eightE. faecalis and five E. faecium strains were isolated from 1026 samples obtained from the 19 farms. Ten sequence types were identified among the E. faecalis strains, of which ST256 (42.9%) and ST86 (25%) were the most abundant. The oxazolidinone and phenicol resistance genes poxtA, optrA, and fexA were detected in isolates of E. faecalis (100%, 85.7%, and 67.9%, respectively) and E. faecium (100%, 60%, and 80%, respectively). The minimum inhibitory concentrations of linezolid in these isolates ranged from 2 mg/L to 12 mg/L. The whole-genome sequencing data indicated that fexA was located upstream of poxtA. CONCLUSIONS: This is the first study to report the detection of poxtA in isolates that were both susceptible and resistant to linezolid in Korea. These results demonstrate the importance of antimicrobial resistance monitoring programmes, including regular antimicrobial susceptibility testing and resistance gene expression analysis, to facilitate the control of the spread of antibiotic resistance in non-clinical settings in Korea.


Assuntos
Oxazolidinonas , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Enterococcus , Oxazolidinonas/farmacologia , República da Coreia , Suínos
7.
Int J Food Microbiol ; 293: 53-59, 2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30640000

RESUMO

The heavy use or abuse of antimicrobials in food animals has caused an increase in antimicrobial resistance in enterococci of animal origin, which could get transmitted to those of human origin via the food chain. Since duck meat consumption has been on the rise in Korea, we conducted this study to provide information about the antimicrobial resistance of the enterococci obtained from healthy ducks and their carcasses. A total of 82 Enterococcus faecium and 174 E. faecalis isolated from duck fecal and carcass samples were investigated for antimicrobial resistance to 16 agents, using broth dilution method, and were further characterized using molecular methods. Most of E. faecium (84.1%) and E. faecalis (87.9%) isolates were resistant to one or more antimicrobials. Multi-drug resistant (MDR) isolates were observed in both E. faecium (40.2%) and E. faecalis (33.9%) with high frequencies. High rate of resistance was observed for tetracycline, ciprofloxacin, chloramphenicol, and erythromycin in both E. faecium and E. faecalis. Resistance to gentamicin, vancomycin, and daptomycin, in both E. faecium and E. faecalis, was, if at all, very rare. However, linezolid resistance was observed in nine E. faecium (11.0%) and one E. faecalis (0.6%). All, but one, Linezolid resistant (LR) isolates were also resistant to chloramphenicol and florfenicol. The novel transferable oxazolidinone and phenicol resistant gene, optrA, was found in six E. faecium isolates. All of them co-carried phenicol exporter gene fexA. None of the LR isolates had mutation in the 23S ribosomal RNA and in the ribosomal protein L3. Six LR E. faecium isolates had Asn130Lys mutation in the ribosomal protein L4, of which five also carried optrA gene. None of the isolates carried the multi-resistance gene cfr. Transfer of oxazolidinone and phenicol resistance was observed in five among the 10 LR isolates; two of them had optrA and fexA genes. Multi-drug resistant Enterococcus that also carried the resistance gene to a last-resort antimicrobial is a major concern for public health. Thus, to prevent the introduction of last-resort antimicrobial resistance into food chain, continuous surveillance of antimicrobial resistance in duck is imperative.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Patos/microbiologia , Enterococcus faecalis/isolamento & purificação , Enterococcus faecium/isolamento & purificação , Oxazolidinonas/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cloranfenicol/farmacologia , Ciprofloxacina/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Eritromicina/farmacologia , Fezes/microbiologia , Genes Bacterianos , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , RNA Ribossômico 23S/isolamento & purificação , República da Coreia , Proteína Ribossômica L3 , Tetraciclina/farmacologia , Tianfenicol/análogos & derivados , Tianfenicol/farmacologia
8.
Environ Toxicol Chem ; 38(3): 575-584, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569581

RESUMO

Phenicol antibiotics, such as chloramphenicol, thiamphenicol, and florfenicol, are commonly used in the veterinary and aquaculture fields to treat diseases and have frequently been detected in aquatic environments. Nevertheless, there is limited information regarding the effects of phenicol antibiotics on aquatic nontarget species. Thus, the present study aims to investigate the long-term (21-d) influence on the reproduction and growth of and the acute (24-h) oxidative response and tissue damage in the crustacean Daphnia magna after exposure to phenicol drugs, including their environmental concentrations. The results indicate that D. magna exposed to florfenicol are likely to cause more adverse effects than those exposed to chloramphenicol and thiamphenicol over long-term (21-d) exposures. Furthermore, changes in biochemical biomarkers such as malondialdehyde (MDA), catalase (CAT), and reduced glutathione (GSH) induced by individual and mixtures of phenicol antibiotics were also observed. Low concentrations of chloramphenicol, thiamphenicol + florfenicol, and chloramphenicol + thiamphenicol significantly increased the MDA levels of D. magna after 24-h exposures, causing cellular oxidative damage in the animals. In addition, discrepancies between CAT activities and GSH levels were observed, underscoring the need to evaluate multiple indicators of oxidative stress in toxicological studies using D. magna as a model. Environ Toxicol Chem 2019;38:575-584. © 2018 SETAC.


Assuntos
Antibacterianos/toxicidade , Cloranfenicol/toxicidade , Estresse Oxidativo , Tianfenicol/análogos & derivados , Tianfenicol/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Daphnia/fisiologia , Glutationa/metabolismo , Malondialdeído/metabolismo , Reprodução/efeitos dos fármacos
9.
Folia Microbiol (Praha) ; 63(4): 443-449, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29307119

RESUMO

The genetic basis for phenicol resistance was examined in 38 phenicol-resistant clinical Escherichia coli isolates from poultry. Out of 62 isolates, 38 showed resistance for chloramphenicol and nine for florfenicol, respectively. Each strain also demonstrated resistance to a variety of other antibiotics. Molecular detection revealed that the incidence rates of the cat1, cat2, flo, flo-R, cmlA, and cmlB were 32, 29, 18, 13, 0, and 0%, respectively. Nineteen strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of five isolates revealed the amino acid changes in four isolates. DNA sequencing showed the non-synonymous mutations which change the amino acid, silent mutation, and nucleotide deletion in four isolates. MY09C10 showed neither deletion nor mutation in nucleotide. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in these strains. Complementation with a plasmid-borne wild-type acrR gene reduced the expression level of AcrA protein in the mutants and partially restored antibiotic susceptibility one- to fourfold. This study shows that mutations in acrR are an additional genetic basis for phenicol resistance.


Assuntos
Antibacterianos/farmacologia , Resistência ao Cloranfenicol/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Doenças das Aves Domésticas/microbiologia , Proteínas Repressoras/genética , Animais , Galinhas , Resistência ao Cloranfenicol/efeitos dos fármacos , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Teste de Complementação Genética/veterinária , Genótipo , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana/veterinária , Mutação
10.
Aquat Toxicol ; 186: 67-76, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28257901

RESUMO

Florfenicol (FF) and thiamphenicol (TAP) are two typical pharmaceuticals used widely as therapeutica antibiotic agents in aquaculture. However, little is known about the potential adverse effects of these two antibiotics on non-target organisms in the aquatic ecosystem. In this study we investigated the effects of FF and TAP on photosynthesis and the antioxidant system of the cyanobacteria Microcystis flos-aquae. Over a concentration range of 0.001-1µg/L, the results showed that both FF and TAP significantly increased the chlorophyll a content of M. flos-aquae, while the superoxide dismutase (SOD) activity, catalase (CAT) activity and the levels of malondialdehyde (MDA) changed slightly. In contrast, the chlorophyll a content of M. flos-aqua was significantly inhibited (p<0.01) at high concentrations (>1µg/L) of FF and TAP, reaching a 46% inhibition level at 50µg/L FF and 56% inhibition at 100µg/L TAP. At the same time, the activities of SOD and CAT along with MDA content also increased significantly (p<0.01), indicating that the high concentrations of both FF and TAP led to oxidative stress in the algae. In addition, the M. flos-aquae fluorescence parameters (Fv/Fm, Fv/Fo, alpha, ETRmax and Ik) increased with increasing concentration of both FF and TAP, which may be the result of the increasing photoprotection capacity.


Assuntos
Antioxidantes/metabolismo , Exposição Ambiental/análise , Microcystis/metabolismo , Fotossíntese/efeitos dos fármacos , Tianfenicol/análogos & derivados , Tianfenicol/toxicidade , Proteínas de Algas/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Malondialdeído/metabolismo , Microcystis/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
11.
Chemosphere ; 111: 278-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997929

RESUMO

Thiamphenicol and florfenicol are two phenicol antibiotics widely used in aquaculture and are ubiquitous as micropollutants in surface waters. The present study investigated their photodegradation kinetics, hydroxyl-radical (OH) oxidation reactivities and products. Firstly, the photolytic kinetics of the phenicols in pure water was studied as a function of initial concentrations (C0) under UV-vis irradiation (λ>200nm). It was found that the kinetics was influenced by C0. A linear plot of the pseudo-first-order rate constant vs C0 was observed with a negative slope. Secondly, the reaction between the phenicol antibiotics and OH was examined with a competition kinetic method under simulated solar irradiation (λ>290nm), which quantified their bimolecular reaction rate constants of (2.13±0.02)×10(9)M(-1)s(-1) and (1.82±0.10)×10(9)M(-1)s(-1) for thiamphenicol and florfenicol, respectively. Then the corresponding OH oxidated half-lives in sunlit surface waters were calculated to be 90.5-106.1h. Some main intermediates were formed from the reaction, which suggested that the two phenicols underwent hydroxylation, oxygenation and dehydrogenation when OH existed. These results are of importance to assess the phenicol persistence in wastewater treatment and sunlit surface waters.


Assuntos
Antibacterianos/química , Radical Hidroxila/química , Tianfenicol/análogos & derivados , Tianfenicol/química , Antibacterianos/análise , Cromatografia Líquida de Alta Pressão , Hidroxilação , Cinética , Luz , Espectrometria de Massas , Oxirredução , Fotólise , Tianfenicol/análise , Raios Ultravioleta , Eliminação de Resíduos Líquidos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA