RESUMO
BACKGROUND: This study was designed to investigate the mechanism by which miR-30a-5p mediates cardiomyocyte apoptosis after acute myocardial infarction (AMI) induced by hypoxia/reoxygenation (H/R). METHODS: Differentially expressed miRNAs were analyzed by RNA high-throughput sequencing in acute myocardial infarction (ST-elevation myocardial infarction) patients versus healthy individuals (controls). The H/R model was used to assess the regulatory mechanism of miRNAs in AMI. Lentivirus-associated vectors were used to overexpress or knock down miR-30a-5p in cellular models. The pathological mechanisms of miR-30a-5p regulating the development of acute myocardial infarction were serially explored by qPCR, bioinformatics, target gene prediction, dual luciferase, enzyme-linked immunosorbent assays (ELISAs) and Western blotting. RESULTS: The results showed that the expression of miR-30a-5p was significantly increased in AMI patients and H9C2 cells. Hypoxia decreased cardiomyocyte survival over time, and reoxygenation further reduced cell survival. Bax and Phosphatase and tensin homolog (PTEN)were suppressed, while Bcl-2 was upregulated. Additionally, miR-30a-5p specifically targeted the PTEN gene. According to the GO and KEGG analyses, miR-30a-5p may participate in apoptosis by interacting with PTEN. The miR-30a-5p mimic decreased the expression of apoptosis-related proteins and the levels of the proinflammatory markers IL-1ß, IL-6, and TNF-α by activating the PTEN/PI3K/Akt signaling pathway. Conversely, anti-miR-30a-5p treatment attenuated these effects. Additionally, silencing PTEN and anti-miR-30a-5p had opposite effects on H/R-induced cell apoptosis. CONCLUSIONS: miR-30a-5p plays a crucial role in cardiomyocyte apoptosis after hypoxia-induced acute myocardial infarction. Our findings provide translational evidence that miR-30a-5p is a novel potential therapeutic target for AMI.
Assuntos
Apoptose , Hipóxia Celular , MicroRNAs , Miócitos Cardíacos , PTEN Fosfo-Hidrolase , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Estudos de Casos e Controles , Linhagem Celular , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genéticaRESUMO
BACKGROUND: Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes could alter miRNA expression levels or processing and, thus, may contribute to colorectal cancer (CRC) development. Therefore, this study aimed to examine whether the MIR181A1 genomic sequence possesses SNPs that can affect the expression of hsa-miR-181a-5p and, subsequently, impact its targets and associate with CRC risk. METHODS: The NCBI dbSNP database was searched for possible SNPs associated with MIR181A1. One SNP with a minor allele frequency > 5%, rs12039395 G > T was identified. In silico analyses determined the effect of the SNP on the secondary structure of the miRNA and predicted the hsa-miR-181a-5p target genes. The SNP was genotyped using allelic discrimination assay, the relative hsa-miR-181a-5p expression level was determined using quantitative real-time PCR, and immunohistochemical staining was used to detect target genes in 192 paraffin-embedded specimens collected from 160 CRC patients and 32 healthy subjects. RESULTS: The rs6505162 SNP conferred protection against CRC, and the G-allele presence provides may provide accessibility for the transcriptional machinery. Hsa-miR-181a-5p was significantly over-expressed in the CRC group compared to controls and in samples carrying the G-allele compared to those with T-allele. PTEN, identified as the only hsa-miR-181a-5p target implicated in CRC, was significantly diminished in the CRC group compared to controls and showed an inverse relationship with hsa-miR-181a-5p expression level as well as negatively associated with the G-allele presence in CRC. CONCLUSION: This study highlights that rs12039395 G > T may protect against CRC by influencing the expression of hsa-mir-181a-5p and its target gene, PTEN.
Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , MicroRNAs , PTEN Fosfo-Hidrolase , Polimorfismo de Nucleotídeo Único , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , PTEN Fosfo-Hidrolase/genética , Feminino , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Idoso , Regulação Neoplásica da Expressão GênicaRESUMO
Contrast-induced acute kidney injury (CI-AKI), also known as contrast-induced nephropathy (CIN), has become the third leading cause of iatrogenic AKI. Serum creatinine (Scr) is currently used in CIN clinical diagnosis. Patients with increased Scr have developed severe kidney injury, so there is an urgent need to find a bio-marker for CIN early diagnosis. To investigate the changes in circulating microRNA-188-5p (miR-188-5p) after coronary angiography and its predictive value for the CIN occurrence, miR-188-5p expression in CIN rats from the GEO database and CIN patients and control patients from Lianshui People's Hospital was analyzed. The results showed that miR-188-5p expression in plasma and renal was higher in CIN group than in control group. Further, a total of 36 CIN patients and 108 non-CIN patients were included. There were significant differences in age, hypertension, diabetes, and contrast agent dosage. After 12 h of contrast agent application, circulating miR-188-5p expression in CIN group was higher than control group. Univariate and multivariate logistic regression analysis showed that age, hypertension, diabetes, contrast media dosage and postoperative miR-188-5p expression were closely related to CIN occurrence. For in vitro experiments, intracellular miR-188-5p expression was decreased with ioversol treatment, while miR-188-5p expression in supernatant was increased. To explore the potential mechanism of miR-188-5p in CIN, HK-2 cells were treated with NC mimic, ioversol, or miR-188-5p mimic. The results showed that the application of miR-188-5p mimic reduced apoptosis, reactive oxygen species and MDA, enhanced SOD and GSH contents. Further, it was confirmed that mRNA and protein levels of PTEN were up-regulated in ioversol-treated HK-2 cells, and down-regulated after miR-188-5p administration. Dual-luciferase reporter gene assay confirmed that PTEN was direct target gene of miR-188-5p. Above results suggest that circulating miR-188-5p has the potential to serve as a predictor of CIN.
RESUMO
Transforming growth factor-beta 2 (TGF-ß2) is highly concentrated in the aqueous humor of primary open-angle glaucoma patients. TGF-ß2 causes fibrosis of outflow tissues, such as the trabecular meshwork (TM), and increases intraocular pressure by increasing resistance to aqueous humor outflow. Recently, histone deacetylase (HDAC) activity was investigated in fibrosis in various tissues, revealing that HDAC inhibitors suppress tissue fibrosis. However, the effect of HDAC inhibitors on fibrosis in the eye was not determined. Here, we investigated the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on TGF-ß2-induced increased resistance to aqueous humor outflow. We found that SAHA suppressed TGF-ß2-induced outflow resistance in perfused porcine eyes. Moreover, SAHA cotreatment suppressed TGF-ß2-induced ocular hypertension in rabbits. The permeability of monkey TM (MTM) and Schlemm's canal (MSC) cell monolayers was decreased by TGF-ß2 treatment. SAHA inhibited the effects of TGF-ß2 on the permeability of these cells. TGF-ß2 also increased the expression of extracellular matrix proteins (fibronectin and collagen type I or IV) in MTM, MSC, and human TM (HTM) cells, while SAHA inhibited TGF-ß2-induced extracellular matrix protein expression in these cells. SAHA also inhibited TGF-ß2-induced phosphorylation of Akt and ERK, but did not inhibit Smad2/3 phosphorylation, the canonical pathway of TGF-ß signaling. Moreover, SAHA induced the expression of phosphatase and tensin homolog, a PI3K/Akt signaling factor, as well as bone morphogenetic protein 7, an endogenous antagonist of TGF-ß. These results imply that SAHA prevents TGF-ß2-induced increases in outflow resistance and regulates the non-Smad pathway of TGF-ß signaling in TM and MSC cells.
Assuntos
Fator de Crescimento Transformador beta2/metabolismo , Vorinostat/metabolismo , Vorinostat/farmacologia , Animais , Humor Aquoso/metabolismo , Humor Aquoso/fisiologia , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Macaca fascicularis , Masculino , Hipertensão Ocular/metabolismo , Fosforilação , Cultura Primária de Células , Coelhos , Transdução de Sinais , Suínos , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/fisiologia , Fatores de Crescimento Transformadores/metabolismoRESUMO
BACKGROUND: NCAPG, non-SMC subunit in the concentrate I complex, might promote the proliferation of hepatocellular carcinoma (HCC), but the mechanism is unclear. The aim of this study was to explore how NCAPG affects PTEN to influence the proliferation of HCC. METHODS: Western blotting, qRT-PCR and immunohistochemistry were used to detect NCAPG expression in HCC tissues. The effect of NCAPG on the proliferation of HCC cell lines was evaluated using an EdU incorporation assay, a Cell Counting Kit-8 assay and Fluorescence in situ hybridization (FISH). BALB/c-nu/nu mice were used for the in vivo proliferation experiment. Transcriptome sequencing was used to determine the relationship between NCAPG and PTEN. Immunocoprecipitation-mass spectrometry (IP-MS), proteomic sequencing and Co-immunoprecipitation (CO-IP) were used to identify and examine the interaction between the NCAPG and CKII proteins. RESULTS: We confirmed that NCAPG was abnormally overexpressed in HCC and promoted the proliferation of HCC cells. Transcriptome sequencing revealed that NCAPG inhibited the transcription of PTEN and promoted the activation of the PI3K-AKT pathway. We found a close association between NCAPG and CKII through proteomic sequencing; their interaction was confirmed by Co-IP. There was a positive correlation between NCAPG and CKII that promoted the phosphorylation of PTEN and thus inhibited its transcription and functions. We also proved that CKII was the key factor in the induction of proliferation by NCAPG. CONCLUSION: We revealed the mechanism by which NCAPG regulates the proliferation of HCC: NCAPG inhibits PTEN through its interaction with CKII, and then activates the PI3K-AKT pathway to promote the proliferation of HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Impaired mitochondrial fusion, due in part to decreased mitofusin 2 (Mfn2) expression, contributes to unrestricted cell proliferation and apoptosis-resistance in hyperproliferative diseases like pulmonary arterial hypertension (PAH) and non-small cell lung cancer (NSCLC). We hypothesized that Mfn2 levels are reduced due to increased proteasomal degradation of Mfn2 triggered by its phosphorylation at serine 442 (S442) and investigated the potential kinase mediators. Mfn2 expression was decreased and Mfn2 S442 phosphorylation was increased in pulmonary artery smooth muscle cells from PAH patients and in NSCLC cells. Mfn2 phosphorylation was mediated by PINK1 and protein kinase A (PKA), although only PINK1 expression was increased in these diseases. We designed a S442 phosphorylation deficient Mfn2 construct (PD-Mfn2) and a S442 constitutively phosphorylated Mfn2 construct (CP-Mfn2). The effects of these modified Mfn2 constructs on Mfn2 expression and biological function were compared with those of the wildtype Mfn2 construct (WT-Mfn2). WT-Mfn2 increased Mfn2 expression and mitochondrial fusion in both PAH and NSCLC cells resulting in increased apoptosis and decreased cell proliferation. Compared to WT-Mfn2, PD-Mfn2 caused greater Mfn2 expression, suppression of proliferation, apoptosis induction, and cell cycle arrest. Conversely, CP-Mfn2 caused only a small increase in Mfn2 expression and did not restore mitochondrial fusion, inhibit cell proliferation, or induce apoptosis. Silencing PINK1 or PKA, or proteasome blockade using MG132, increased Mfn2 expression, enhanced mitochondrial fusion and induced apoptosis. In a xenotransplantation NSCLC model, PD-Mfn2 gene therapy caused greater tumor regression than did therapy with WT-Mfn2. Mfn2 deficiency in PAH and NSCLC reflects proteasomal degradation triggered by Mfn2-S442 phosphorylation by PINK1 and/or PKA. Inhibiting Mfn2 phosphorylation has potential therapeutic benefit in PAH and lung cancer.
Assuntos
Proliferação de Células , GTP Fosfo-Hidrolases/metabolismo , Hipertensão Pulmonar/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Proteólise , Células A549 , Animais , GTP Fosfo-Hidrolases/genética , Humanos , Hipertensão Pulmonar/genética , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Quinases/genéticaRESUMO
Triple-negative breast cancer (TNBC) is an aggressive cancer subtype for which effective therapies are unavailable. TNBC has a high frequency of tumor protein p53 (Tp53/p53)- and phosphatase and tensin homolog (PTEN) deficiencies, and combined p53- and PTEN-deficiency is associated with poor prognosis and poor response to anticancer therapies. In this study, we discovered that combined p53- and PTEN-deficiency in TNBC activates expression of the transcription factor mesenchyme homeobox 1 (MEOX1). We found that MEOX1 is expressed only in TNBC cells with frequent deficiencies in p53 and PTEN, and that its expression is undetectable in luminal A, luminal B, and HER2+ subtypes, as well as in normal breast cells with wild-type (WT) p53 and PTEN. Notably, siRNA knockdown of both p53 and PTEN activated MEOX1 expression in breast cancer cells, whereas individual knockdowns of either p53 or PTEN had only minimal effects on MEOX1 expression. MEOX1 knockdown abolished cell proliferation of p53- and PTEN-deficient TNBC in vitro and inhibited tumor growth in vivo, but had no effect on the proliferation of luminal and HER2+ cancer cells and normal breast cells. RNA-Seq and immunoblotting analyses showed that MEOX1 knockdown decreased expression of tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 5B (STAT5B), and STAT6 in p53- and PTEN-deficient TNBC cells. These results reveal the effects of combined p53- and PTEN-deficiency on MEOX1 expression and TNBC cell proliferation, suggesting that MEOX1 may serve as a potential therapeutic target for managing p53- and PTEN-deficient TNBC.
Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , PTEN Fosfo-Hidrolase/deficiência , Fatores de Transcrição/biossíntese , Proteína Supressora de Tumor p53/deficiência , Animais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , PTEN Fosfo-Hidrolase/metabolismo , Fator de Transcrição STAT5/biossíntese , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT6/biossíntese , Fator de Transcrição STAT6/genética , TYK2 Quinase/biossíntese , TYK2 Quinase/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas , Proteína Supressora de Tumor p53/metabolismoRESUMO
The cytokine content in tissue microenvironments shapes the functional capacity of a T cell. This capacity depends on the integration of extracellular signaling through multiple receptors, including the T-cell receptor (TCR), co-receptors, and cytokine receptors. Transforming growth factor ß (TGF-ß) signals through its cognate receptor, TGFßR, to SMAD family member proteins and contributes to the generation of a transcriptional program that promotes regulatory T-cell differentiation. In addition to transcription, here we identified specific signaling networks that are regulated by TGFßR. Using an array of biochemical approaches, including immunoblotting, kinase assays, immunoprecipitation, and flow cytometry, we found that TGFßR signaling promotes the formation of a SMAD3/4-protein kinase A (PKA) complex that activates C-terminal Src kinase (CSK) and thereby down-regulates kinases involved in proximal TCR activation. Additionally, TGFßR signaling potentiated CSK phosphorylation of the P85 subunit in the P85-P110 phosphoinositide 3-kinase (PI3K) heterodimer, which reduced PI3K activity and down-regulated the activation of proteins that require phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) for their activation. Moreover, TGFßR-mediated disruption of the P85-P110 interaction enabled P85 binding to a lipid phosphatase, phosphatase and tensin homolog (PTEN), aiding in the maintenance of PTEN abundance and thereby promoting elevated PtdIns(4,5)P2 levels in response to TGFßR signaling. Taken together, these results highlight that TGF-ß influences the trajectory of early T-cell activation by altering PI3K activity and PtdIns levels.
Assuntos
Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatidilinositóis/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Ativação Enzimática , Estabilidade Enzimática , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Multimerização Proteica , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismoRESUMO
As a convenient, effective and economical kidney replacement therapy for end-stage renal disease (ESRD), peritoneal dialysis is available in approximately 11% of ESRD patients worldwide. However, long-term peritoneal dialysis treatment causes peritoneal fibrosis. In recent years, the application potential of molecular hydrogen in the biomedicine has been well recognized. Molecular hydrogen selectively scavenges cytotoxic reactive oxygen species (ROS) and acts as an antioxidant. In this experiment, a high glucose-induced peritoneal fibrosis mouse model was successfully established by intraperitoneal injection of high glucose peritoneal dialysate, and peritoneal fibrosis mice were treated with hydrogen-rich peritoneal dialysate. In addition, in vitro studies of high glucose-induced peritoneal fibrosis were performed using MeT-5A cells. In vitro and in vivo experiments show that molecular hydrogen could inhibit peritoneal fibrosis progress induced by high glucose effectively. Furthermore, it has been found that molecular hydrogen alleviate fibrosis by eliminating intracellular ROS and inhibiting the activation of the PTEN/AKT/mTOR pathway. The present data proposes that molecular hydrogen exerts the capacity of anti-peritoneal fibrosis through the ROS/PTEN/AKT/mTOR pathway. Therefore, molecule hydrogen is a potential, safe, and effective treatment agent, with peritoneal protective property and great clinical significance.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , PTEN Fosfo-Hidrolase/metabolismo , Fibrose Peritoneal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Sobrevivência Celular/genética , Células Cultivadas , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Imuno-Histoquímica , Lentivirus/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
Gastric cancer is one of the most common malignancies with a high mortality rate world. This study intends to make clear the role and mechanism of the Scutellarin (Scu), a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.-Mazz, in regulating the evolvement of gastric cancer. We selected different doses of Scu to treat gastric cancer cells (MGC-803 and AGS). Then, cell counting kit-8 (CCK8) assay was conducted to verify the proliferation of tumor cells, while flow cytometry was adopted to test the apoptosis rate. Meanwhile, Western blot was conducted to examine epithelial-mesenchymal transition (EMT) markers and the expression of phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K) and apoptosis-related proteins (Bax, Bcl2 and Caspase3). Moreover, xenograft tumor experiment in nude mice was established to verify the effect of Scu on tumor growth. Furthermore, the knockdown model of PTEN was constructed, and the influence of PTEN on the anti-tumor effect of Scu was investigated. As a result, Scu inhibited cell proliferation, EMT and promoted the apoptosis in gastric cancer dose-dependently. Additionally, Scu attenuated tumor cell growth in vivo. Besides, Scu enhanced the expression of PTEN while reduced the phosphorylated level of PI3K. Moreover, the mechanistic study proved that Scu inactivated PI3K by up-regulating PTEN, thus dampening tumor progression. In conclusion, Scu dampened the growth and EMT of gastric cancer by regulating the PTEN/PI3K pathway.
Assuntos
Antineoplásicos/uso terapêutico , Apigenina/uso terapêutico , Glucuronatos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucuronatos/farmacologia , Humanos , Camundongos Nus , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologiaRESUMO
Exosomes are nanoscale extracellular vesicles that can transport cargos of proteins, lipids, DNA, various RNA species and microRNAs (miRNAs). Exosomes can enter cells and deliver their contents to recipient cell. Owing to their cargo exosomes can transfer different molecules to the target cells and change the phenotype of these cells. The fate of the contents of an exosome depends on its target destination. Various mechanisms for exosome uptake by target cells have been proposed, but the mechanisms responsible for exosomes internalization into cells are still debated. Exosomes exposed cells produce labeled protein kinases, which are expressed by other cells. This means that these kinases are internalized by exosomes, and transported into the cytoplasm of recipient cells. Many studies have confirmed that exosomes are not only secreted by living cells, but also internalized or accumulated by the other cells. The "next cell hypothesis" supports the notion that exosomes constitute communication vehicles between neighboring cells. By this mechanism, exosomes participate in the development of diabetes and its associated complications, critically contribute to the spreading of neuronal damage in Alzheimer's disease, and non-proteolysed form of Fas ligand (mFasL)-bearing exosomes trigger the apoptosis of T lymphocytes. Furthermore, exosomes derived from human B lymphocytes induce antigen-specific major histocompatibility complex (MHC) class II-restricted T cell responses. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules. This process is defined as "exosome-immune suppression" concept. The interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma promote the transfer of oncogenes and onco-miRNAs from one cell to other. Circulating exosomes that are released from hypertrophic adipocytes are effective in obesity-related complications. On the other hand, the "inflammasome-induced" exosomes can activate inflammatory responses in recipient cells. In this chapter protein kinases-related checkpoints are emphasized considering the regulation of exosome biogenesis, secretory traffic, and their impacts on cell death, tumor growth, immune system, and obesity.
Assuntos
Doença de Alzheimer , Exossomos , MicroRNAs , Humanos , Neurônios , Linfócitos TRESUMO
BACKGROUND: Long non-coding RNAs (LncRNAs) are involved in glioblastoma (GBM), but the role of long intergenic non-protein coding RNA 01410 (lncRNA LINC01410) is poorly understood. METHODS: The expression of LINC01410 in GBM tissues and cells was analyzed. After transfection or temozolomide (TMZ) treatment, the cell viability and apoptosis were detected using cell counting kit-8 assay and flow cytometry. The targeting relationship between LINC01410 and microRNA (miR)-370-3p was confirmed by dual-luciferase reporter assay. Expressions of LINC01410, miR-370-3p and drug resistance- and Phosphatase and Tensin Homolog (PTEN)/AKT pathway-related factors were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS: LINC01410 expression was upregulated in GBM, and silencing of LINC01410 decreased cell viability. A slowed decreased trend in cell viability yet an increased half maximal inhibitory concentration (IC50 for TMZ) value and increased expressions of drug resistance-related factors as well as LINC01410 were found in TMZ-resistant GBM cells. Silencing of LINC01410 also decreased the IC50 value yet promoted the sensitivity and apoptosis in TMZ-resistant cells, while upregulating the expression of PTEN and downregulating the phosphorylation of AKT. MiR-370-3p could competitively bind to LINC01410 and its expression was decreased in both parental and TMZ-resistant GBM cells. Downregulation of miR-370-3p reversed the effects of LINC01410 silencing on cell viability, apoptosis and the expressions of miR-370-3p and PTEN/AKT pathway-related factors. CONCLUSION: Silencing of LINC01410 inhibits cell viability yet enhances apoptosis and sensitivity to TMZ in GBM cells by inactivating PTEN/AKT pathway via targeting miR-370-3p.
Assuntos
Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , MicroRNAs/biossíntese , RNA Longo não Codificante/biossíntese , Temozolomida/farmacologia , Adulto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/fisiologia , Glioblastoma/tratamento farmacológico , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Temozolomida/uso terapêuticoRESUMO
Herb Tabor was the Editor-in-Chief of the Journal of Biological Chemistry (JBC) spanning the years 1971-2010. This year, Herb turns 100. What do you give a person turning 100? Our answer to this question was to dedicate two of our favorite JBC papers to Herb. Both of these papers focus on reversible phosphorylation, which we briefly review. In addition, we delve into a new finding that centers around a novel family of secreted kinases, suggesting that there are many new and exciting discoveries yet to explore.
Assuntos
Bioquímica/história , Publicações Periódicas como Assunto , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , História do Século XX , História do Século XXI , Humanos , FosforilaçãoRESUMO
T-cell receptor (TCR) signaling strength is a dominant factor regulating T-cell differentiation, thymic development, and cytokine signaling. The molecular mechanisms by which TCR signal strength is transduced to downstream signaling networks remains ill-defined. Using computational modeling, biochemical assays, and imaging flow cytometry, we found here that TCR signal strength differentially generates phosphatidylinositol species. Weak TCR signals generated elevated phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and reduced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) levels, whereas strong TCR signals reduced PI(4,5)P2 and elevated PIP3 levels. A proteomics screen revealed that focal adhesion kinase bound PI(4,5)P2, biochemical assays disclosed that focal adhesion kinase is preferentially activated by weak TCR signals and is required for optimal Treg induction, and further biochemical experiments revealed how TCR signaling strength regulates AKT activation. Low PIP3 levels generated by weak TCR signals were sufficient to activate phosphoinositide-dependent kinase-1 to phosphorylate AKT on Thr-308 but insufficient to activate mTOR complex 2 (mTORC2), whereas elevated PIP3 levels generated by a strong TCR signal were required to activate mTORC2 to phosphorylate Ser-473 on AKT. Our results provide support for a model that links TCR signaling to mTORC2 activation via phosphoinositide 3-kinase signaling. Together, the findings in this work establish that T cells measure TCR signal strength by generating different levels of phosphatidylinositol species that engage alternate signaling networks to control cell fate decisions.
Assuntos
Linfócitos T CD4-Positivos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Animais , Linfócitos T CD4-Positivos/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Retinal ganglion cell (RGC) degeneration, leading to irreversible blindness in chronic optic neuropathies, commonly begins with dendritic shrinkage followed by axon degeneration. Although limited axon regeneration in the optic nerve is possible with a genetic deletion of PTEN/SOCS3 after optic nerve injury, the roles of PTEN/SOCS3 on dendritic preservation and regeneration remain unclear. This study investigated the effect of PTEN/SOCS3 genetic deletion on the structural integrity of RGC dendrites and axons in the retina following optic nerve crush. Using time-lapse, in vivo confocal scanning laser ophthalmoscopy to serially image dendritic and axonal arborizations of RGCs over six months after injury, RGC dendrites and axons were only preserved in Thy-1-YFP/PTEN-/- and Thy-1-YFP/PTEN-/-SOCS3-/- mice, and axons in the retina regenerated at a rate of 21.1 µm/day and 15.5 µm/day, respectively. By contrast, dendritic complexity significantly decreased in Thy-1-YFP-SOCS3-/- and control mice at a rate of 7.0 %/day and 7.1 %/day, respectively, and no axon regeneration in the retina was observed. RGC survival probability was higher in Thy-1-YFP/PTEN-/- and Thy-1-YFP/PTEN-/-SOCS3-/- mice compared with Thy-1-YFP-SOCS3-/- and control mice. The differential responses between the transgenic mice demonstrate that although a genetic deletion of PTEN, SOCS3, or PTEN/SOCS3 allows partial axon regeneration in the optic nerve after optic nerve crush, a deletion of PTEN, but not SOCS3, ameliorates RGC dendritic shrinkage. This shows that the signaling pathways involved in promoting axon regeneration do not equally contribute to the preservation of dendrites, which is crucial to the translational application of neuroregenerative therapies for visual restoration.
Assuntos
Dendritos/fisiologia , Deleção de Genes , Fibras Nervosas/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , PTEN Fosfo-Hidrolase/genética , Células Ganglionares da Retina/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/genética , Animais , Dependovirus/genética , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Compressão Nervosa , Regeneração Nervosa/fisiologiaRESUMO
Dairy cows with fatty liver exhibit hepatic lipid accumulation and disturbances in fatty acid oxidation and lipid transport. Phosphatase and tensin homolog (PTEN), a lipid phosphatase, regulates intrahepatic fatty acid oxidation and lipid transport in mice. Whether PTEN play a role in fatty acid oxidation and very low density lipoprotein (VLDL) assembly in calf hepatocytes are unknown. Hepatocytes isolated from 3 healthy female Holstein calves (1 d old, 30-40 kg) were infected with empty adenovirus with green fluorescent protein for 48 h (Ad-GFP group) or infected with PTEN knockdown adenovirus for 48 h (Ad-shPTEN group), or cultured in RPMI-1640 without Ad-shPTEN or Ad-GFP (control group). Compared with the Ad-GFP group, PTEN knockdown decreased mRNA and protein abundance and the activity of fatty acid oxidation-related molecules, including acyl-coA synthetase long-chain 1, carnitine palmitoyltransferase 1, carnitine palmitoyltransferase 2, and 3-hydroxy acyl-coA dehydrogenase. Furthermore, PTEN knockdown decreased mRNA and protein abundance of VLDL assembly-related molecules, including apolipoprotein B100, apolipoprotein E, microsomal triglyceride transfer protein, and low density lipoprotein receptor. Importantly, PTEN knockdown promoted triglyceride accumulation in hepatocytes and reduced the VLDL content in culture medium. A subsequent study was conducted on the following 4 groups: cells infected with Ad-GFP for 48 h and then treated with 2% BSA for another 24 h (Ad-GFP + BSA); cells infected with Ad-GFP for 48 h and then treated with 1.2 mM free fatty acids (FFA) and 2% BSA for another 24 h (Ad-GFP + 1.2 mM FFA); cells infected with Ad-shPTEN for 48 h and then treated with 2% BSA for another 24 h (Ad-shPTEN + BSA); cells infected with Ad-shPTEN for 48 h and then treated with 1.2 mM FFA and 2% BSA for another 24 h (Ad-shPTEN + 1.2 mM FFA). Compared with Ad-GFP + BSA, the abundances of PTEN and of fatty acid oxidation- and VLDL assembly-related proteins were lower in the Ad-GFP + 1.2 mM FFA group. Importantly, PTEN knockdown heightened the increase in triglyceride accumulation of hepatocytes and the decrease in VLDL content in culture medium induced by FFA. Overall, these in vitro data indicate that FFA inhibits PTEN expression, leading to triglyceride accumulation and the inhibition of VLDL assembly in calf hepatocytes. These findings suggest that PTEN may be a potential therapeutic target for FFA-induced hepatic steatosis in dairy cows.
Assuntos
Doenças dos Bovinos/fisiopatologia , Bovinos/fisiologia , Ácidos Graxos/metabolismo , Fígado Gorduroso/veterinária , Lipoproteínas VLDL/metabolismo , Monoéster Fosfórico Hidrolases/genética , Tensinas/genética , Animais , Bovinos/genética , Células Cultivadas , Fígado Gorduroso/fisiopatologia , Feminino , Técnicas de Silenciamento de Genes/veterinária , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Oxirredução , Monoéster Fosfórico Hidrolases/metabolismo , Tensinas/metabolismo , Triglicerídeos/metabolismoRESUMO
Thermodynamic stability is a fundamental property shared by all proteins. Changes in stability due to mutation are a widespread molecular mechanism in genetic diseases. Methods for the prediction of mutation-induced stability change have typically been developed and evaluated on incomplete and/or biased data sets. As part of the Critical Assessment of Genome Interpretation, we explored the utility of high-throughput variant stability profiling (VSP) assay data as an alternative for the assessment of computational methods and evaluated state-of-the-art predictors against over 7,000 nonsynonymous variants from two proteins. We found that predictions were modestly correlated with actual experimental values. Predictors fared better when evaluated as classifiers of extreme stability effects. While different methods emerging as top performers depending on the metric, it is nontrivial to draw conclusions on their adoption or improvement. Our analyses revealed that only 16% of all variants in VSP assays could be confidently defined as stability-affecting. Furthermore, it is unclear as to what extent VSP abundance scores were reasonable proxies for the stability-related quantities that participating methods were designed to predict. Overall, our observations underscore the need for clearly defined objectives when developing and using both computational and experimental methods in the context of measuring variant impact.
Assuntos
Biologia Computacional/métodos , Metiltransferases/química , Mutação , PTEN Fosfo-Hidrolase/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metiltransferases/genética , PTEN Fosfo-Hidrolase/genética , Estabilidade ProteicaRESUMO
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development.
Assuntos
Sistemas CRISPR-Cas , Núcleo Celular/genética , Microcefalia/genética , Neurônios/patologia , PTEN Fosfo-Hidrolase/genética , Convulsões/genética , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Tamanho Celular , Feminino , Edição de Genes , Masculino , Camundongos , Microcefalia/complicações , Microcefalia/patologia , Mutação , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Convulsões/complicações , Convulsões/patologia , Transdução de SinaisRESUMO
Emerging evidence has shown that the hepatocyte growth factor (HGF) and its receptor, MET proto-oncogene, receptor tyrosine kinase (MET), promote cell proliferation, motility, morphogenesis, and angiogenesis. Whereas up-regulation of MET expression has been observed in aggressive and metastatic prostate cancer, a clear understanding of MET function in prostate tumorigenesis remains elusive. Here, we developed a conditional Met transgenic mouse strain, H11Met/+:PB-Cre4, to mimic human prostate cancer cells with increased MET expression in the prostatic luminal epithelium. We found that these mice develop prostatic intraepithelial neoplasia after HGF administration. To further assess the biological role of MET in prostate cancer progression, we bred H11Met/+/PtenLoxP/LoxP:PBCre4 compound mice, in which transgenic Met expression and deletion of the tumor suppressor gene Pten occurred simultaneously only in prostatic epithelial cells. These compound mice exhibited accelerated prostate tumor formation and invasion as well as increased metastasis compared with PtenLoxP/LoxP:PB-Cre4 mice. Moreover, prostatic sarcomatoid carcinomas and lesions resembling the epithelial-to-mesenchymal transition developed in tumor lesions of the compound mice. RNA-Seq and qRT-PCR analyses revealed a robust enrichment of known tumor progression and metastasis-promoting genes in samples isolated from H11Met/+/PtenLoxP/LoxP:PB-Cre4 compound mice compared with those from PtenLoxP/LoxP:PB-Cre4 littermate controls. HGF-induced cell proliferation and migration also increased in mouse embryonic fibroblasts (MEFs) from animals with both Met transgene expression and Pten deletion compared with Pten-null MEFs. The results from these newly developed mouse models indicate a role for MET in hastening tumorigenesis and metastasis when combined with the loss of tumor suppressors.
Assuntos
Transformação Celular Neoplásica/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Fator de Crescimento de Hepatócito/genética , Masculino , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/genéticaRESUMO
Bladder cancer, the second most common genitourinary malignancy, severely endangers the human health. Rising evidence suggests that metabotropic glutamate receptors (mGluRs) are involve in tumor progression. In this study, we observed that metabotropic glutamate receptor 4 (mGluR4) was functionally expressed in normal and cancerous bladder cells and its expression was positively correlated with high bladder cancer grading. We further confirmed that the activation of mGluR4 by VU0155041, an mGluR4-specific agonist, decreased cyclic adenosine monophosphate (cAMP) concentration and cell viability, promoted apoptosis and inhibited proliferation in bladder cancer cells, whereas MSOP (group III mGluR antagonist) or mGluR4 knockdown eliminated the effects of mGluR4 activity. Western blotting revealed the decreased cyclin D1 expression, increased procaspase-8/9/3 cleavage, and unbalanced Bcl-2/Bax expression in bladder cancer cell lines after mGluR4 activation, and likewise MSOP and mGluR4 knockdown abrogated the actions of mGluR4 activity. In vivo study showed that mGluR4 activation significantly inhibited tumor growth of bladder cancer via suppressing proliferation and promoting apoptosis. Furthermore, upregulation of phosphatase and tensin homolog (PTEN) and inhibition of Akt phosphorylation were also observed after mGluR4 activation. Similar with VU0155041, the Akt-specific inhibitor markedly promoted apoptosis and inhibited proliferation. Nevertheless, the PTEN-specific inhibitor significantly abolished the mGluR4 activation-induced cell apoptosis and proliferative inhibition in bladder cancer cell lines. These results indicate that mGluR4 can regulate the switch between survival and death via the cAMP/PTEN/AKT signaling pathway in bladder cancer cells. Our findings suggest that mGluR4 has diagnostic and prognostic potential for bladder cancer, and the development of mGluR4 agonist may be a promising strategy for bladder cancer treatment.