Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(1): e202303038, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852935

RESUMO

Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.


Assuntos
Corantes Fluorescentes , Técnicas Fotoacústicas , Animais , Camundongos , Rodaminas , Ésteres , Técnicas Fotoacústicas/métodos , Xantenos , Imagem Óptica/métodos
2.
Chemistry ; 30(16): e202303331, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206848

RESUMO

Near-infrared (NIR) dyes are desirable for biological imaging applications including photoacoustic (PA) and fluorescence imaging. Nonetheless, current NIR dyes are often plagued by relatively large molecular weights, poor water solubility, and limited photostability. Herein, we provide the first examples of azaphosphinate dyes which display desirable properties such as low molecular weight, absorption/emission above 750 nm, and remarkable water solubility. In PA imaging, an azaphosphinate dye exhibited a 4.1-fold enhancement in intensity compared to commonly used standards, the ability to multiplex with existing dyes in whole blood, imaging depths of 2.75 cm in a tissue model, and contrast in mice. An improved derivative for fluorescence imaging displayed a >10-fold reduction in photobleaching in water compared to the FDA-approved indocyanine green dye and could be visualized in mice. This new dye class provides a robust scaffold for the development of photoacoustic or NIR fluorescence imaging agents.


Assuntos
Corantes Fluorescentes , Verde de Indocianina , Animais , Camundongos , Peso Molecular , Imagem Óptica/métodos , Água
3.
Chemistry ; 30(37): e202400598, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38662806

RESUMO

Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.


Assuntos
Técnicas Fotoacústicas , Xantenos , Técnicas Fotoacústicas/métodos , Xantenos/química , Humanos , Corantes Fluorescentes/química , Monóxido de Carbono/análise , Monóxido de Carbono/química , Óxido Nítrico/análise , Óxido Nítrico/química , Cobre/química , Corantes/química , Animais
4.
Sensors (Basel) ; 20(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096750

RESUMO

Photoacoustic imaging is attracting a great deal of interest owing to its distinct advantages over other imaging techniques such as fluorescence or magnetic resonance image. The availability of photoacoustic probes for reactive oxygen and nitrogen species (ROS/RNS) could shed light on a plethora of biological processes mediated by these key intermediates. Tetramethylbenzidine (TMB) is a non-toxic and non-mutagenic colorless dye that develops a distinctive blue color upon oxidation. In this work, we have investigated the potential of TMB as an acoustogenic photoacoustic probe for ROS/RNS. Our results indicate that TMB reacts with hypochlorite, hydrogen peroxide, singlet oxygen, and nitrogen dioxide to produce the blue oxidation product, while ROS, such as the superoxide radical anion, sodium peroxide, hydroxyl radical, or peroxynitrite, yield a colorless oxidation product. TMB does not penetrate the Escherichia coli cytoplasm but is capable of detecting singlet oxygen generated in its outer membrane.

5.
Small ; 14(30): e1800782, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29873182

RESUMO

Photoacoustic (PA) imaging (PAI) is a noninvasive and nonionizing biomedical imaging modality that combines the advantages of optical imaging and ultrasound imaging. Based on PAI, photoacoustic detection (PAD) is an emerging approach that is involved with the interaction between PA probes and analytes resulting in the changes of photoacoustic signals for molecular detection with rich contrast, high resolution, and deep tissue penetration. This Review focuses on the recent development of PA probes in PAD. The following contents will be discussed in detail: 1) the construction of PA probes; 2) the applications and mechanisms of PAD to different types of analytes, including microenvironments, small biomolecules, or metal ions; 3) the challenges and perspectives of PA probes in PAD.


Assuntos
Imagem Molecular/métodos , Imagem Molecular/tendências , Sondas Moleculares/química , Técnicas Fotoacústicas/métodos , Técnicas Fotoacústicas/tendências , Técnicas Biossensoriais , Íons , Metais/química
6.
Biosens Bioelectron ; 235: 115399, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210842

RESUMO

Noninvasive and accurate detection of liver fibrosis is extremely significant for well-timed intervention and treatment to prevent or reverse its progression. Fluorescence imaging probes hold great potential for imaging of liver fibrosis, but they always encounter the inherent limitation of shallow penetration depth, which compromises their ability of in vivo detection. To overcome this issue, an activatable fluoro-photoacoustic bimodal imaging probe (IP) is herein developed for specific visualization of liver fibrosis. The probe IP is constructed on a near-infrared thioxanthene-hemicyanine dye that is caged with gamma-glutamyl transpeptidase (GGT) responsive substrate and linked with integrin-targeted peptide (cRGD). Such molecular design permits IP to effectively accumulate in the liver fibrosis region through specific recognition of cRGD towards integrin and activate its fluoro-photoacoustic signal after interaction with overexpressed GGT to precisely monitor the liver fibrosis. Thus, our study presents a potential strategy to design dual-target fluoro-photoacoustic imaging probes for noninvasive detection of early-stage liver fibrosis.


Assuntos
Técnicas Biossensoriais , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Sondas Moleculares/química , Corantes Fluorescentes/química , gama-Glutamiltransferase , Integrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA