Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 288, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970689

RESUMO

Orexinergic neurons are critically involved in regulating arousal, wakefulness, and appetite. Their dysfunction has been associated with sleeping disorders, and non-peptide drugs are currently being developed to treat insomnia and narcolepsy. Yet, no light-regulated agents are available to reversibly control their activity. To meet this need, a photoswitchable peptide analogue of the endogenous neuroexcitatory peptide orexin-B was designed, synthesized, and tested in vitro and in vivo. This compound - photorexin - is the first photo-reversible ligand reported for orexin receptors. It allows dynamic control of activity in vitro (including almost the same efficacy as orexin-B, high nanomolar potency, and subtype selectivity to human OX2 receptors) and in vivo in zebrafish larvae by direct application in water. Photorexin induces dose- and light-dependent changes in locomotion and a reduction in the successive induction reflex that is associated with sleep behavior. Molecular dynamics calculations indicate that trans and cis photorexin adopt similar bent conformations and that the only discriminant between their structures and activities is the positioning of the N-terminus. This, in the case of the more active trans isomer, points towards the OX2 N-terminus and extra-cellular loop 2, a region of the receptor known to be involved in ligand binding and recognition consistent with a "message-address" system. Thus, our approach could be extended to several important families of endogenous peptides, such as endothelins, nociceptin, and dynorphins among others, that bind to their cognate receptors through a similar mechanism: a "message" domain involved in receptor activation and signal transduction, and an "address" sequence for receptor occupation and improved binding affinity.


Assuntos
Luz , Receptores de Orexina , Orexinas , Peixe-Zebra , Receptores de Orexina/metabolismo , Receptores de Orexina/química , Animais , Orexinas/metabolismo , Humanos , Locomoção/efeitos dos fármacos , Simulação de Dinâmica Molecular , Larva/metabolismo , Larva/efeitos dos fármacos , Células HEK293 , Ligantes
2.
Small ; 20(10): e2307138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875766

RESUMO

Covalent organic frameworks (COFs) offer a desirable platform to explore multichoromophoric arrays for photocatalytic conversion. Symmetric arrangement of choromophoric modules over π-extended frameworks enhances exciton delocalization while impairing excitation density and accordingly photochemical reactivity. Herein, a photoisomerization-driven strategy is proposed to break the excited-state symmetry of ketoenamine-linked COFs with multichoromophoric arrays. Incorporating electron-withdrawing benzothiadiazole facilitates the ultrafast excited-state intramolecular proton transfer (ESIPT) from enamine to keto within 140 fs, resulting in partially enolized COF isomers. The hybrid linkages containing imine and enamine bonds at the node of framework alter the symmetry of electronic structure and enforce the photoinduced charge separation. Increasing the imine-to-enamine ratio further promotes the electron transferred number in a long range, thereby affording the optimum photocatalytic hydrogen evolution rate. This work put forward an ESIPT-induced photoisomerization to build a symmetry-breaking COF with weakened exciton effect and enhanced photochemical reactivity.

3.
Small ; 20(24): e2309329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221705

RESUMO

Azobenzene, which activates its geometric and chemical structure under light stimulation enables noninvasive control of mass transport in many processes including membrane separations. However, producing azobenzene-decorated channels that have precise size tunability and favorable pore wall chemistry allowing fast and durable permeation to solvent molecules, remains a great challenge. Herein, an advanced membrane that comprises geometry and polarity gradients within covalent organic framework (COF) nanochannels utilizing photoisomerization of azobenzene groups is reported. Such functional variations afford reduced interfacial transfer resistance and enhanced solvent-philic pore channels, thus creating a fast solvent transport pathway without compromising selectivity. Moreover, the membrane sets up a densely covered defense layer to prevent foulant adhesion and the accumulation of cake layer, contributing to enhanced antifouling resistance to organic foulants, and a high recovery rate of solvent permeance. More importantly, the solvent permeance displays a negligible decline throughout the long-term filtration for over 40 days. This work reports the geometry and polarity gradients in COF channels induced by the conformation change of branched azobenzene groups and demonstrates the strong capability of this conformation change in realizing fast and durable molecular separations.

4.
Small ; : e2400305, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136427

RESUMO

Photochromic molecular motors hold promise for a multitude of potential applications in fields ranging from medicine to communications and structural repair. Yet, it is still a challenge to predict their mechanical efficiency. Here, azobenzene is explored as a representative light-driven nanomotor and estimate its quantum yield of photoisomerization and maximum mechanical efficiency. This is based on first-principles mapping of the 3D potential energy surfaces for the ground and excited states of the trans and cis configurations and identifying the minimum energy pathway for isomerization. A work cycle is devised and identifies force constant as the parameter that resembles temperature in the Carnot heat engine, but with very different efficiencies. The results show that the optomechanical efficiency of azobenzene at constant load is about 5% albeit under ideal conditions. To test the hypothesis, the study also explores the optomechanical efficiency of stilbene and 2-butene and shows that their efficiency does not exceed 5%.

5.
Small ; : e2404184, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128134

RESUMO

Optically-controlled phase change materials, which are prepared by introducing molecular photoswitches into traditional phase change materials (PCMs), can convert and store solar energy into photochemical enthalpy and phase change enthalpy. However, the thermophysical properties of optically controlled PCMs, which are crucial in the practical, are rarely paid attention to. 4-(phenyldiazenyl)phenyl decanoate (Azo-A-10) is experimentally prepared as an optically-controlled PCMs, whose energy storage density is 210.0 kJ·kg-1, and the trans single crystal structure is obtained. The density, phase transition temperature, thermal conductivity, and other parameters in trans state are measured experimentally. Furthermore, a microscopic model of Azo-A-10 is established, and the thermophysical properties are analyzed based on molecular dynamics. The results show that the microstructure parameter (order parameters) and thermophysical properties (density, radial distribution function, self-diffusion coefficient, phase change temperature, and thermal conductivity) of partially or completely isomerized Azo-A-10, which are challenging to observe in experiments, can be predicted by molecular dynamics simulation. The optically-controlled phase change mechanism can be clarified according to the differences in microstructure. The optically-controlled switchability of thermophysical properties of an optically-controlled PCM is analyzed. This study provides ideas for the improvement, development, and application of optically-controlled PCMs in the future.

6.
Chemistry ; : e202402479, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174492

RESUMO

The development of durable photosensitizers is pivotal for advancing phototherapeutic applications in biomedicine. Here, we introduce a core-shell azobenzene-spiropyran structure on gold nanoparticles, engineered to enhance singlet oxygen generation. These nano-photosensitizers exhibit increased structural stability and thermal resistance, as demonstrated by slowed O-N-C bond recombination dynamics via in-situ Raman spectroscopy. Notably, the in-situ formation of merocyanine and a light-induced compact shell arrangement extend its half-life from 47 minutes to over 154 hours, significantly boosting singlet oxygen output. The nano-photosensitizer also shows high biocompatibility and notably inhibits tau protein aggregation in neural cells, even with phosphatase inhibitors. Further, it promotes dendritic growth in neuro cells, doubling typical lengths. This work not only advances chemical nanotechnology but also sets a foundation for developing long-lasting phototherapy agents for treating neurodegenerative diseases.

7.
Chemistry ; 30(36): e202401171, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38646836

RESUMO

Stimuli-responsive crystalline materials have received much attention for being potential candidates of smart materials. However, the occurrence of polymorphism-driven stimuli responses in crystalline materials remains interesting but rare. Herein, three polymorphs of an acylhydrazone derivative, N'-[(E)-(1-benzofuran-2-yl) methylidene] pyridine -4-carbohydrazide (BFMP) were prepared. Form-1 undergoes a photomechanical response via E→Z photoisomerization under UV irradiation, accompanied by a decrease in fluorescence intensity and a change from colorless to yellow. Two types of Z→E thermal isomerization mechanisms with significant differences in conversion rate were observed at different temperatures in form-1. The solid-melt-solid transition has a faster conversion rate compared to the solid-solid transition due to freedom from lattice confinement. The transition from form-2 to form-3 can be achieved under grinding, coupled with a significant decrease in fluorescence intensity. The similar molecular stacking pattern of form-2 and form-3 provides a structural basis for the grinding-induced crystalline transition behavior. In addition, the presence of the pyridine moiety imparts an acidochromic property. The combination of photochromism and acidochromism explores the possible applications of acylhydrazone derivatives in information encryption.

8.
Chemistry ; 30(40): e202401590, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38749912

RESUMO

Photo-triggered phase transition is a new type of phase transition in which a photochromic crystal with a thermal phase transition transforms into an identical high-temperature phase in a temperature region lower than the thermal phase transition temperature upon light irradiation. Here, we report a second crystal that exhibits a photo-triggered phase transition, thereby demonstrating that the photo-triggered phase transition is a general phenomenon that occurs in crystals. When the chiral salicylidenephenylethylamine crystal was irradiated with ultraviolet (UV) light, the photo-triggered phase transition occurred in the temperature range -30 to -10 °C. The photo-triggered phase transition is induced by local stress due to trans-keto molecules produced by photoisomerization near the irradiated surface. Crystal cantilevers exhibited stepwise bending by the combination of the photo-triggered phase transition and photoisomerization. Alternate irradiation with UV and visible light achieved locomotion of single crystals driven by repeated stepwise bending. Finally, a detailed comparison of photo-triggered and non-photo-triggered phase transition crystals revealed that a sufficient molecular conformation change in affordable crystal voids, smooth photoisomerization, and most likely a chiral molecular arrangement are required for inducing the photo-triggered phase transition.

9.
Chemistry ; 30(23): e202304174, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38267371

RESUMO

Photochemical action plots are a powerful tool for mapping photochemical reaction outcomes wavelength-by-wavelength. Typically, they map either the depletion of a reactant or the formation of a specific product as a function of wavelength. Herein, we exploit action plots to simultaneously map the formation of several photochemical products from a single chromophore. We demonstrate that the wavelength-resolved mapping of two reaction products formed during the irradiation of a chalcone species not only shows wavelength dependence - exhibiting the typical strong red-shift of the photochemical reactivity compared to the absorbance spectrum of the chromophore - but also a strong wavelength selectivity with remarkably different product distributions resulting from different irradiation wavelengths.

10.
Chemphyschem ; : e202400250, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820005

RESUMO

The design and application of molecular photoswitches have attracted much attention. Herein, we performed a detailed computational study on the photoswitch benzylidene-oxazolone system based on static electronic structure calculations and on-the-fly excited-state dynamic simulations. For the Z and E isomer, we located six and four minimum energy conical intersections (MECIs) between the first excited state (S1) and the ground state (S0), respectively. Among them, the relaxation pathway driven by ring-puckering motion is the most competitive channel with the photoisomeization process, leading to the low photoisomerization quantum yield. In the dynamic simulations, about 88 % and 66 % trajectories decay from S1 to S0 for Z and E isomer, respectively, within the total simulation time of ~2 ps. The photoisomeization quantum yields obtained in our study (0.20 for Z→E and 0.12 for E→Z) agree well with the experimental measured values (0.25 and 0.11), even though the number of trajectories is limited to 50. Our study sheds light on the complexity of the benzylidene-oxazolone system 's deactivation process and the competitive mechanisms among different reaction channels, which provides theoretical guidance for further design and development of benzylidene-oxazolone based molecular photoswitches.

11.
Chemphyschem ; : e202400421, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825850

RESUMO

Azobenzene-containing polymers (azopolymers) are a kind of fascinating stimuli-responsive materials with broad and versatile applications. In this work, a series of syndiotactic C1 type azopolymers of Pm-Azo-Cn with side-chain azobenzene mesogens of varied length alkoxy tails (n=1, 4, 8, 10) and different length alkyl spacers (m=6, 10) have been prepared via Rh-catalyzed carbene polymerization. The thermal properties and ordered assembly structures of thus synthesized side chain liquid crystalline polymers (SCLCPs) have been systematically investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM) and variable-temperature small/wide-angle X-ray scattering (SAXS/WAXS) analyses. P10-Azo-C1 and P10-Azo-C4 with shorter alkoxy tails exhibited hierarchical structures SmB/Colob and transformed into SmA/Colob at a higher temperature, while P10-Azo-C8 and P10-Azo-C10 with longer alkoxy tails only displayed side group dominated layered SmB phase and transformed into SmA phase at higher temperatures. For P6-Azo-C4 with a shorter spacer only showed a less ordered SmA phase owing to interference by partly coupling between the side chain azobenzene mesogens and the helical backbone. More importantly, the series high densely substituted syndiotactic C1 azopolymer thin films, exhibited evidently and smoothly reversible photoresponsive properties, which demonstrated promising photoresponsive device applications.

12.
J Theor Biol ; 592: 111879, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-38909882

RESUMO

BACKGROUND: Iron-induced oxidative stress was thought to be the reason why the a-wave amplitude of the electroretinogram (ERG) dropped when iron ions were present. It is assumed that reactive oxygen species (ROS) are generated in the presence of iron ions, and this leads to a decrease in hyperpolarization of the photoreceptor. It is known that in age-related macular degeneration (AMD), sodium iodate can induce oxidative stress, apoptosis, and retinal damage, which mimic the effects of clinical AMD. Here, the reduction of the a-wave amplitude in mice with sodium iodate-induced age-related macular degeneration is explained. METHODS: The leading edge of the a-wave is divided into voltages developed by cones and rods. The same oxidative stress model is applied here since sodium iodate causes the creation of ROS in a manner similar to that caused by iron ions, with the exception that the retina is treated as a circuit of various resistances when computing the photoresponse. Moreover, sodium iodate also leads to apoptosis and, hence, may cause misalignment in cones (not in rods) during the initial stage of apoptosis in AMD. To include the effects of apoptosis and shortening in cones and rods, we have used a factor representing the fraction of total cones and rods that are alive. To include the effect of misalignment of cones on the reduction of the a-wave amplitude, we have used the Stiles-Crawford function to calculate the number of photoisomerizations occurring in a photoreceptor misaligned at an angle θ. The results are compared with experimental data. RESULTS: In sodium iodate-treated eyes, the ROS produced can attract calcium ions in the photoreceptor, which increases the calcium influx. In the case of the cones, the inclusion of the misalignment angle in the phototransduction process helps in determining the voltage and slope of the voltage vs. time graph.The smaller the fraction of active photoreceptors, the smaller the amplitude of the a-wave. The calcium influx, misaligned photoreceptors, and total photoreceptor loss all cause the amplitude of the a-wave to decrease, and at any time from the beginning of phototransduction cascade, the calcium influx causes the slope of the a-wave to increase. CONCLUSION: The reduction in the a-wave amplitude in the eyes of sodium iodate-treated mice is attributed to oxidative stress in both cones and rods and cone misalignment, which ultimately lead to apoptosis and vision loss in AMD.


Assuntos
Eletrorretinografia , Iodatos , Degeneração Macular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Células Fotorreceptoras Retinianas Cones , Animais , Degeneração Macular/patologia , Degeneração Macular/fisiopatologia , Degeneração Macular/induzido quimicamente , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Apoptose/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Modelos Animais de Doenças , Modelos Biológicos
13.
J Fluoresc ; 34(1): 275-281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37204533

RESUMO

Herein a new azobenzene-substituted porphyrin molecule was synthesized, characterized and its optoelectronic properties were investigated by combining the high optoelectronic properties of porphyrin with the photosensitive properties of azobenzene. The carboxylic acid of azobenzene was covalently connected to -OH group of the porphyrin ring by using Steglich esterification. Molecular structure of the obtained azobenzene-porphyrin (8), was elucidated, by FTIR, 1 H and 13 C NMR and HRMS. After structural characterization absorption and emission, characteristics were determined in solvents that have different. And also, optical and fluorescence behaviors in the range of different acid pH with trans-cis photoisomerization behaviors were investigated in aqueous-THF solution in acid media.

14.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799455

RESUMO

We demonstrate how two-photon excitation with quantum light can influence elementary photochemical events. The azobenzene trans → cis isomerization following entangled two-photon excitation is simulated using quantum nuclear wave packet dynamics. Photon entanglement modulates the nuclear wave packets by coherently controlling the transition pathways. The photochemical transition state during passage of the reactive conical intersection in azobenzene photoisomerization is strongly affected with a noticeable alteration of the product yield. Quantum entanglement thus provides a novel control knob for photochemical reactions. The distribution of the vibronic coherences during the conical intersection passage strongly depends on the shape of the initial wave packet created upon quantum light excitation. X-ray signals that can experimentally monitor this coherence are simulated.

15.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892342

RESUMO

The synthesis of biphenylmethoxydibenzo[b,f]oxepine or photoswitchable fluorinated dibenzo[b,f]oxepine derivatives with one or three azo bonds, potential microtubule inhibitors, is described. Our studies provide a concise method for constructing derivatives containing the dibenzo[b,f]oxepine skeleton. An analysis of products was run using experimental and theoretical methods. Next, we evaluated the E/Z isomerization of azo-dibenzo[b,f]oxepine derivatives, which could be photochemically controlled using visible-wavelength light.


Assuntos
Moduladores de Tubulina , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Estrutura Molecular
16.
Molecules ; 29(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611731

RESUMO

Although identical in molecular formula and weight, curcumin and cyclocurcumin show remarkable differences in their reactivity. Both are natural compounds isolated from the rhizome of turmeric, the former is involved in the diketo/keto-enol tautomerism through the bis-α,ß-unsaturated diketone unit according to the polarity of the solvent, while the latter could react by trans-cis isomerization due to the presence of the α,ß-unsaturated dihydropyranone moiety. Even if curcumin is generally considered responsible of the therapeutical properties of Curcuma longa L. due to its high content, cyclocurcumin has attracted great interest over the last several decades for its individual behavior and specific features as a bioactive compound. Cyclocurcumin has a hydrophobic nature characterized by fluorescence emission, solvatochromism, and the tendency to form spherical fluorescent aggregates in aqueous solution. Molecular docking analysis reveals the potentiality of cyclocurcumin as antioxidant, enzyme inhibitor, and antiviral agent. Promising biological activities are observed especially in the treatment of degenerative and cardiovascular diseases. Despite the versatility emerging from the data reported herein, the use of cyclocurcumin seems to remain limited in clinical applications mainly because of its low solubility and bioavailability.


Assuntos
Curcumina , Curcumina/análogos & derivados , Piranos , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antivirais
17.
Angew Chem Int Ed Engl ; 63(34): e202407186, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38837631

RESUMO

Although natural sunlight is one of the most abundant and sustainable energy resources, only a fraction of its energy is currently harnessed and utilized in photoactive systems. The development of molecular photoswitches that can be directly activated by sunlight is imperative for unlocking the full potential of solar energy and addressing the growing energy demands. Herein, we designed a series of 2-amino-1,3-bis-azopyrazoles featuring a coupled πn system, resulting in a pronounced redshift in their spectral absorption, reaching up to 661 nm in the red region. By varying the amino substituents of these molecules, highly efficient E→Z photoisomerization under unfiltered sunlight can be achieved, with yields of up to 88.4 %. Moreover, the Z,Z-isomers have high thermal stability with half-lives from days to years at room temperature. The introduction of ortho-amino substitutions and meta-bisazo units leads to a reversal of the n-π* and πn-π* transitions on the energy scale. This change provides a new perspective for further tuning the visible absorption of azo-switches by utilizing the πn-π* band instead of the conventional n-π* band. These results suggest that photoresponsive systems can be powered by sunlight instead of traditional artificial lights, thereby paving the way for sustainable smart materials and devices.

18.
Angew Chem Int Ed Engl ; 63(31): e202404528, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38722260

RESUMO

Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.

19.
Angew Chem Int Ed Engl ; 63(30): e202405818, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665012

RESUMO

Molecular solar thermal systems (MOST) represent an auspicious solution for the storage of solar energy. We report silver salts as a unique class of catalysts, capable of releasing the stored energy from the promising 1,2-dihydro-1,2-azaborinine based MOST system. Mechanistic investigations provided insights into the silver catalyzed thermal backreaction, concurrently unveiling the first crystal structure of a 2-aza-3-borabicyclo[2.2.0]hex-5-ene, the Dewar isomer of 1,2-dihydro-1,2-azaborinine. Quantification of activation energies by kinetic experiments has elucidated the advantageous energy change associated with Lewis acid catalysts, a phenomenon corroborated through computational analysis. By means of low temperature NMR spectroscopy, mechanistic insights into the coordination of Ag+ to the 1,2-dihydro-1,2-azaborinine were gained.

20.
Angew Chem Int Ed Engl ; : e202410130, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932636

RESUMO

In contrast to the self-assembly of homosupramolecules, the self-assembly of heterosupramolecules is more challenging and significant in various fields. Herein, we design and investigate a cucurbit[8]uril-mediated heterodimerisation based on an arene-fluoroarene strategy. Furthermore, the heteroternary complex is found to be able to undergo a photoinduced [2+2] heterocycloaddition, resulting in the formation of an unexpected [2]rotaxane. This work demonstrates a novel supramolecular heterodimerisation system that not only contributes to the development of photoisomerisation systems, but also enriches synthetic methods for mechanically interlocked molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA