RESUMO
Physochlaina is a genus of flowering plants belonging to the family Solanaceae and consists of 10 species distributed in various Asian countries. The species of the genus have been traditionally used to cure a variety of illnesses due to their highly valuable medicinal properties, including cancer, asthma, cough, weakness, stomachache, diarrhea, swelling, spasms, toothache, boils, ulcers, rheumatic pain, chronic bronchitis, gastric problems, abdominal pain, palpitation, and insomnia. The species have gained significant attention due to their remarkable ethnopharmacological and ethnomedicinal significance. The researchers have isolated so far 71 biologically active secondary metabolites from different Physochlaina species, which include flavonoids, alkaloids, coumarins, phenolic acids, iridoids, and sterols. These compounds exhibit diverse biological activities, such as antibacterial, anti-oxidant, anti-inflammatory, cytotoxic, and anticancer properties. The present review has been compiled with the intention of providing a comprehensive overview of the botany, distribution, traditional uses, phytochemical profile, and biological activities of the genus Physochlaina for future exploration of plant-based drugs and therapeutic approaches. The present review contributes to understanding the significant pharmacological potential of Physochlaina species and unraveling their chemical composition, highlighting their relevance in developing therapeutic agents. Till date, numerous pharmacological properties and isolated phytochemicals of Physochlaina species that support the species traditional and ethnobotanical history have been documented in a number of scientific publications. However, greater emphasis should be paid to inâ vivo investigations on various extracts and their phytoconstituents as well as mechanistic analysis to help drug developers better understand how to use Physochlaina species as significant therapeutic resources for herbal formulations using various techniques.
Assuntos
Compostos Fitoquímicos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Humanos , Medicina Tradicional , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificaçãoRESUMO
In this article, two undescribed amides (1-2) with an unusual (2-formyl-5-hydroxymethyl)pyrroyl-butylamine moiety were obtained from the Physochlainae Radix. Comprehensive spectroscopic studies, including NMR and HR-ESI-MS, coupling with spectroscopic data comparisons were used to determine structures. Anti-inflammatory assay results showed that new amides possessed significant inhibitory activities of the NO production of LPS-induced RAW 264.7 cells, with IC50 values of 17.52±1.68â µM and 20.37±2.42â µM, respectively.
Assuntos
Amidas , Anti-Inflamatórios , Animais , Camundongos , Amidas/farmacologia , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Estrutura MolecularRESUMO
Short repeats (SR) play an important role in shaping seed plant mitochondrial genomes (mtDNAs). However, their origin, distribution, and relationships across the different plant lineages remain unresolved. We focus on the angiosperm family Solanaceae that shows great variation in repeat content and extend the study to a wide diversity of seed plants. We determined the complete nucleotide sequences of the organellar genomes of the medicinal plant Physochlaina orientalis (Solanaceae), member of the tribe Hyoscyameae. To understand the evolution of the P. orientalis mtDNA we made comparisons with those of five other Solanaceae. P. orientalis mtDNA presents the largest mitogenome (â¼685â¯kb in size) among the Solanaceae and has an unprecedented 8-copy repeat family of â¼8.2â¯kb in length and a great number of SR arranged in tandem-like structures. We found that the SR in the Solanaceae share a common origin, but these only expanded in members of the tribe Hyoscyameae. We discuss a mechanism that could explain SR formation and expansion in P. orientalis and Hyoscyamus niger. Finally, the great increase in plant mitochondrial data allowed us to systematically extend our repeat analysis to a total of 136 seed plants to characterize and analyze for the first time families of SR among seed plant mtDNAs.
Assuntos
Genoma Mitocondrial , Genoma de Planta , Repetições de Microssatélites/genética , Sementes/genética , Solanaceae/genética , Sequência de Bases , DNA Mitocondrial/genética , Genomas de Plastídeos , Íntrons/genética , Mitocôndrias/genética , FilogeniaRESUMO
Physochlaina is an important perennial herbaceous genus with significant medicinal value, while the phylogeny of Physochlaina and tribe Hyoscyameae is not well resolved yet. In this study, we report the complete chloroplast genome sequences of Ph. physaloides, its complete chloroplast genome is 156,413 bp in length, which is a typical quadripartite structure that includes a large single-copy region of 86,659 bp, a small single-copy region of 18,012 bp, and its GC content was 37.7%. A total of 132 genes were identified, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Furthermore, a phylogenetic tree of the tribe Hyoscyameae was constructed based the complete chloroplast genome sequence, and a new topology of the tribe was obtained. This study provides valuable genetic information for the conservation and utilization of Ph. physaloides and also provide the potential for better understanding of the phylogeny of Hyoscyameae and Solanaceae.