Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985514

RESUMO

The increase of corrosion resistance of magnesium and its alloys by forming the smart self-healing hybrid coatings was achieved in this work in two steps. In the first step, using the plasma electrolytic oxidation (PEO) treatment, a ceramic-like bioactive coating was synthesized on the surface of biodegradable MA8 magnesium alloy. During the second step, the formed porous PEO layer was impregnated with a corrosion inhibitor 8-hydroxyquinoline (8-HQ) and bioresorbable polymer polycaprolactone (PCL) in different variations to enhance the protective properties of the coating. The composition, anticorrosion, and antifriction properties of the formed coatings were studied. 8-HQ allows controlling the rate of material degradation due to the self-healing effect of the smart coating. PCL treatment of the inhibitor-containing layer significantly improves the corrosion and wear resistance and retains an inhibitor in the pores of the PEO layer. It was revealed that the corrosion inhibitor incorporation method (including the number of steps, impregnation, and the type of solvent) significantly matters to the self-healing mechanism. The hybrid coatings obtained by a 1-step treatment in a dichloromethane solution containing 6 wt.% polycaprolactone and 15 g/L of 8-HQ are characterized by the best corrosion resistance. This coating demonstrates the lowest value of corrosion current density (3.02 × 10-7 A cm-2). The formation of the hybrid coating results in the corrosion rate decrease by 18 times (0.007 mm year-1) as compared to the blank PEO layer (0.128 mm year-1). An inhibitor efficiency was established to be 83.9%. The mechanism of corrosion protection of Mg alloy via smart hybrid coating was revealed.

2.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478090

RESUMO

Magnesium (Mg)-based biomaterials hold considerable promise for applications in regenerative medicine. However, the degradation of Mg needs to be reduced to control toxicity caused by its rapid natural corrosion. In the process of developing new Mg alloys with various surface modifications, an efficient assessment of the relevant properties is essential. In the present study, a WE43 Mg alloy with a plasma electrolytic oxidation (PEO)-generated surface was investigated. Surface microstructure, hydrogen gas evolution in immersion tests and cytocompatibility were assessed. In addition, a novel in vitro immunological test using primary human lymphocytes was introduced. On PEO-treated WE43, a larger number of pores and microcracks, as well as increased roughness, were observed compared to untreated WE43. Hydrogen gas evolution after two weeks was reduced by 40.7% through PEO treatment, indicating a significantly reduced corrosion rate. In contrast to untreated WE43, PEO-treated WE43 exhibited excellent cytocompatibility. After incubation for three days, untreated WE43 killed over 90% of lymphocytes while more than 80% of the cells were still vital after incubation with the PEO-treated WE43. PEO-treated WE43 slightly stimulated the activation, proliferation and toxin (perforin and granzyme B) expression of CD8+ T cells. This study demonstrates that the combined assessment of corrosion, cytocompatibility and immunological effects on primary human lymphocytes provide a comprehensive and effective procedure for characterizing Mg variants with tailorable degradation and other features. PEO-treated WE43 is a promising candidate for further development as a degradable biomaterial.


Assuntos
Materiais Revestidos Biocompatíveis , Magnésio/química , Teste de Materiais , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Equipamentos e Provisões , Humanos , Sistema Imunitário/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Magnésio/farmacocinética , Magnésio/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacocinética , Compostos de Magnésio/farmacologia , Teste de Materiais/métodos , Camundongos , Oxirredução
3.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574947

RESUMO

The degradation rate of magnesium (Mg) alloys is a key parameter to develop Mg-based biomaterials and ensure in vivo-mechanical stability as well as to minimize hydrogen gas production, which otherwise can lead to adverse effects in clinical applications. However, in vitro and in vivo results of the same material often differ largely. In the present study, a dynamic test bench with several single bioreactor cells was constructed to measure the volume of hydrogen gas which evolves during magnesium degradation to indicate the degradation rate in vivo. Degradation medium comparable with human blood plasma was used to simulate body fluids. The media was pumped through the different bioreactor cells under a constant flow rate and 37 °C to simulate physiological conditions. A total of three different Mg groups were successively tested: Mg WE43, and two different WE43 plasma electrolytically oxidized (PEO) variants. The results were compared with other methods to detect magnesium degradation (pH, potentiodynamic polarization (PDP), cytocompatibility, SEM (scanning electron microscopy)). The non-ceramized specimens showed the highest degradation rates and vast standard deviations. In contrast, the two PEO samples demonstrated reduced degradation rates with diminished standard deviation. The pH values showed above-average constant levels between 7.4-7.7, likely due to the constant exchange of the fluids. SEM revealed severe cracks on the surface of WE43 after degradation, whereas the ceramized surfaces showed significantly decreased signs of corrosion. PDP results confirmed the improved corrosion resistance of both PEO samples. While WE43 showed slight toxicity in vitro, satisfactory cytocompatibility was achieved for the PEO test samples. In summary, the dynamic test bench constructed in this study enables reliable and simple measurement of Mg degradation to simulate the in vivo environment. Furthermore, PEO treatment of magnesium is a promising method to adjust magnesium degradation.


Assuntos
Materiais Biocompatíveis/química , Hidrodinâmica , Magnésio/química , Reatores Biológicos , Materiais Revestidos Biocompatíveis , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura
4.
Artigo em Inglês | MEDLINE | ID: mdl-28603382

RESUMO

We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na2SiO3, KF and NaH2PO4·2H2O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

5.
Materials (Basel) ; 16(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068147

RESUMO

The paper presents the results of preliminary research on the possibility of synthesizing ZnO-TiO2 mixed coatings by plasma electrochemical oxidation (PEO). The aim of the work was to synthesize TiO2-ZnO mixed coatings on a titanium substrate from an electrolyte containing ZnO nanoparticles (NPs) and to assess the parameters of PEO on the structure, chemical composition, and properties of the obtained oxide coatings. The PEO process was carried out under various current-voltage conditions using different signals: DC, DC pulse, and AC. In this work, optimal conditions for the PEO process were determined to obtain well-adhering oxide coatings with the highest possible content of ZnO. The structure and morphology of the resulting oxide coatings were investigated, and their chemical and phase composition was comprehensively examined (EDX, XRD, XPS, and GD-OES). In addition, their basic optical properties were assessed. It has been shown that in the PEO DC pulse process, it is possible to obtain oxide coatings characterized by a high degree of structure order, high ZnO content in the oxide coating (3.6 at.%, XPS), and prospective applications for photocatalytic purposes (3.12 eV).

6.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984095

RESUMO

The protective coating with a self-organized microtubular structure was formed using plasma electrolytic oxidation (PEO) on AlMg3 aluminum alloy in the tartrate-fluoride electrolyte. This protective layer was further modified using corrosion inhibitors of the azole group (1,2,4-triazole, benzotriazole) and polymer material (polyvinilidene fluoride, PVDF). X-ray diffraction analysis and scanning electron microscopy with energy dispersive spectroscopy were used to study the morphology and composition of the obtained oxide coatings. The presence of the inhibitor in the PEO-layer was confirmed using micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The level of corrosion protection of formed coatings as well as the effect of loaded inhibitors on the anticorrosion efficiency was evaluated using electrochemical impedance spectroscopy (EIS) and localized scanning techniques (SVET/SIET). The coating impregnation with corrosion inhibitors of the azole group significantly improves the corrosion characteristics of the material. Impregnation of the base PEO-layer with 1,2,4-triazole during 24 h results in a 36 times increase in the impedance modulus measured at the lowest frequency (|Z|f=0.1Hz). Additional sealing of impregnated coating with polymer improves the corrosion stability of the treated material. On the base of the obtained data, the optimal way of protective inhibitor- and polymer-containing formation using surface treatment was suggested. The best barrier properties were established for hybrid coatings obtained by the immersion of a PEO-coated sample in 1,2,4-triazole solution for 24 h and following spraying the PVDF solution. The value of |Z|f=0.1Hz for this protective layer increased by more than two orders of magnitude in comparison with the base PEO-layer. The three-stage mechanism of corrosion inhibition of the sample with smart inhibitor-containing coating was established.

7.
Polymers (Basel) ; 15(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514424

RESUMO

A novel approach to surface modification was developed to improve the corrosion performance of biodegradable magnesium alloys. Additively manufactured magnesium samples and Mg-Mn-based magnesium alloys were used in this study. This method involves the combination of plasma electrolytic oxidation to create a porous ceramic-like matrix, followed by treatment with protective biocompatible agents. The most efficient method for the PEO-layer impregnation using sodium oleate and polycaprolactone was selected and optimized. The correlation between the structure, composition, and protective properties of the hybrid coatings was established. The composition of the formed polymer-containing layers was established using XPS and Raman microspectroscopy. The presence of sodium oleate and its distribution across the coating surface was confirmed at the microscale. The corrosion-protection level of the hybrid layers was assessed using potentiodynamic polarization measurements, electrochemical impedance spectroscopy, hydrogen evolution testing, and gravimetry (mass-loss tests) in vitro. The oleate-containing polycaprolactone layers (HC-SO 0.1-2) demonstrated stable corrosion behavior even after 7 days of immersion in Hank's balanced salt solution. The corrosion-current density and impedance modulus measured at a frequency of 0.1 Hz for the samples with hybrid coating after 7 days of exposure were equal to 5.68 × 10-8 A∙cm-2 and 2.03 × 106 Ω∙cm2, respectively. The developed method of surface modification demonstrates the coating's self-healing properties. The effectiveness of employing hybrid anticorrosive bioactive PEO coatings for biomedical products made from magnesium and its alloys was demonstrated.

8.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499797

RESUMO

In this study, corrosion and wear behavior of three kinds of coatings by two processes, namely, plasma electrolytic oxidation (PEO) coatings (Ti/TiO2), gas nitriding coating (Ti/TiN), and the duplex coating (Ti/TiO2-N) by combination of PEO and gas nitriding methods were systematically investigated. X-ray diffraction tests, field-emission scanning electron microscopy, and adhesion tests are employed for the coating characterization, along with the wear and electrochemical test for evaluating the corrosion and tribological properties. The morphology and structure of the coating consist of micro-cavities known as the pancake structure on the surface. The electrolytic plasma oxidation process produces a typical annealing behavior with a low friction coefficient based on the wear test. The coating consists of nitride and nitrate/oxides titanium for nitrided samples. The surface morphology of nitrided oxide titanium coating shows a slight change in the size of the crystals and the diameter of the cavities due to the influence of nitrogen in the titanium oxide coating. The tribological behavior of the coatings showed that the wear resistance of the duplex coating (Ti/TiO2-N) and Ti/TiO2 coatings is significantly higher compared to Ti/TiN coatings and uncoated Ti samples. The polarization resistance of the Ti/TiO2-N and Ti/TiO2 coatings was 632.2 and 1451.9 kΩ cm2, respectively. These values are considerably greater than that of the uncoated Ti (135.9 kΩ cm2). Likewise, impedance showed that the Ti/TiO2-N and Ti/TiO2 coatings demonstrate higher charge transfer resistance than that of other samples due to better insulating behavior and denser structure.

9.
J Trace Elem Med Biol ; 66: 126756, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33831798

RESUMO

BACKGROUND: The poor biological performance of zirconium implants in the human body resulting from their bio-inertness and vulnerability to corrosion and bacterial activity reflects the need for further studies on substitution or performing the surface modification. The suggestion of employing zirconia (ZrO2) bioceramic coatings for surface modification seems beneficial. OBJECTIVES: This systematic review aims to identify and summarize existing documents reporting the biological responses for ZrO2 coatings produced by the PEO process on zirconium implants. METHODS: PubMed, Scopus, and Web of Science international databases were searched for the original and English-language studies published between 2000 and 2021. All publications reported at least one study about in-vitro (cellular and immersion studies), in-vivo (animal studies), and antibacterial topics for ZrO2-PEO coated zirconium implants. RESULTS: Throughout the initial search, 496 publications were found, and 296 papers remained following the elimination of duplicates. Finally, after multiple screening and eligibility assessments, 25 publications were qualified and included in the review. Among them, 25 in-vitro (cellular and immersion in SBF and Hanks' solutions studies), one in-vivo (animal studies), and eight antibacterial studies were found. CONCLUSION: The ZrO2 coated samples demonstrate no cytotoxicity, high cell viability rate, and excellent biocompatibility. However, changing the solution composition and electrical parameters during the PEO procedures result in significant changes to in-vitro responses. As an instance, the ZrO2 coating surface demonstrates greater biocompatibility after irradiated by UV, which makes the surface more suitable for cell growth. Due to weak apatite-forming ability, the zirconium sample shows low bioactivity in SBF. However, most cases (13 out of 16) show that the specific morphology and chemical composition of the ZrO2 coating promote apatite-forming ability with good bioactivity in SBF. Nevertheless, few papers (three out of 16) showed that the ZrO2 coatings immersed in SBF had no apatite precipitates and so no bioactivity. These cases limit the bioactivity enhancement to treatment by UV-light irradiation, hydrothermal and chemical treatment, thermal evaporation, and cathodic polarization post-treatment on ZrO2 coatings. Both zirconium and ZrO2 coated samples do not show apatite-forming ability in Hanks' solution. The ZrO2 coated implant with the bone together indicates a greater shear strength and rapid new bone formation ability during 12 weeks because of containing Ca-P compounds and porous structure. The UV post-treated ZrO2 coating induces faster new bone formation and firmer connection of bond with bone than those of untreated ZrO2 coatings. A stronger antibacterial activity of ZrO2 coatings is confirmed in half of the selected papers (four out of eight studies) compared to the bare zirconium samples. The antibacterial protection of ZrO2 coatings can be influenced by the PEO procedure variables, i.e., solution composition, electrical parameters, and treatment time. In three cases, the antibacterial activity of ZrO2 coatings is enhanced by deposition of Zn, Ag, or Cu antibacterial layers through thermal evaporation post-treatment.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Zircônio/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/metabolismo , Técnicas Eletroquímicas , Humanos , Teste de Materiais , Testes de Sensibilidade Microbiana , Oxirredução , Zircônio/química , Zircônio/metabolismo
10.
Materials (Basel) ; 13(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481746

RESUMO

This paper shows that the subject of porous coatings fabrication by Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), is still current, inter alia because metals and alloys, which can be treated by the PEO method, for example, titanium, niobium, tantalum and their alloys, are increasingly available for sale. On the international market, apart from scientific works/activity developed at universities, scientific research on the PEO coatings is also underway in companies such as Keronite (Great Britain), Magoxid-Coat (Germany), Mofratech (France), Machaon (Russia), as well as CeraFuse, Tagnite, Microplasmic (USA). In addition, it should be noted that the development of the space industry and implantology will force the production of trouble-free micro- and macro-machines with very high durability. Another aspect in favor of this technique is the rate of part treatment, which does not exceed several dozen minutes, and usually only lasts a few minutes. Another advantage is functionalization of fabricated surface through thermal or hydrothermal modification of fabricated coatings, or other methods (Physical vapor deposition (PVD), chemical vapor deposition (CVD), sol-gel), including also reoxidation by PEO treatment in another electrolyte. In the following chapters, coatings obtained both in aqueous solutions and electrolytes based on orthophosphoric acid will be presented; therein, dependent on the PEO treatment and the electrolyte used, they are characterized by different properties associated with their subsequent use. The possibilities for using coatings produced by means of plasma electrolytic oxidation are very wide, beginning from various types of catalysts, gas sensors, to biocompatible and antibacterial coatings, as well as hard wear coatings used in machine parts, among others, used in the aviation and aerospace industries.

11.
Materials (Basel) ; 13(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878109

RESUMO

Coatings enriched with zinc and copper as well as calcium or magnesium, fabricated on titanium substrate by Plasma Electrolytic Oxidation (PEO) under AC conditions (two cathodic voltages, i.e., -35 or -135 V, and anodic voltage of +400 V), were investigated. In all experiments, the electrolytes were based on concentrated orthophosphoric acid (85 wt%) and zinc, copper, calcium and/or magnesium nitrates. It was found that the introduced calcium and magnesium were in the ranges 5.0-5.4 at% and 5.6-6.5 at%, respectively, while the zinc and copper amounts were in the range of 0.3-0.6 at%. Additionally, it was noted that the metals of the block S (Ca and Mg) could be incorporated into the structure about 13 times more than metals of the transition group (Zn and Cu). The incorporated metals (from the electrolyte) into the top-layer of PEO phosphate coatings were on their first (Cu+) or second (Cu2+, Ca2+ and Mg2+) oxidation states. The crystalline phases (TiO and Ti3O) were detected only in coatings fabricated at cathodic voltage of -135 V. It has also been pointed that fabricated porous calcium-phosphate coatings enriched with biocompatible magnesium as well as with antibacterial zinc and copper are dedicated mainly to medical applications. However, their use for other applications (e.g., catalysis and photocatalysis) after additional functionalizations is not excluded.

12.
Materials (Basel) ; 13(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32182998

RESUMO

The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm3 of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter Sz, which lies in the range 9.72 to 45.18 µm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu+ and Cu2+ into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu2P2O7, and Cu3(PO4)2) and titanium (TiO2-anatase, TiO3, TiP2O7, and Ti0.73O0.91) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings.

13.
Materials (Basel) ; 13(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059415

RESUMO

To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300-600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2∙3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as Sa (1.17-1.90 µm) and Sp (7.62-13.91 µm). The thicknesses of PEO coatings obtained in the electrolyte with 300-600 g/dm3 Cu(NO3) 2∙3H2O were in the range 7.8 to 10 µm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05-0.12, while the range for the top layer (measured using XPS) was 0.17-0.24. The atomic concentration of copper (0.54-0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications.

14.
Colloids Surf B Biointerfaces ; 176: 176-184, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30616108

RESUMO

Plasma electrolytic oxidation (PEO) has been demonstrated to be an effective surface treatment for enhancing the osteoconduction and osseointegration of commercially pure α-Ti (CP α-Ti) dental implant materials for clinical application. To explore the feasibility of extending the application of PEO to low-modulus ß-type titanium alloys for load-bearing orthopaedic implants, a thorough understanding of the effect of substrate material on the biological performance of the PEO-treated surface is required. A 10 kW 50 Hz KeroniteTM processing unit was used to modify the surface of low-modulus near ß-Ti13Nb13Zr and ß-Ti45Nb substrates. CP α-Ti and (α + ß)-Ti6Al4V were also used in parallel as reference materials. In vitro culture of foetal human osteoblast (fHOb) cells on PEO-treated low-modulus near ß-Ti13Nb13Zr and ß-Ti45Nb alloys revealed comparable behaviour to that seen with CP α-Ti and (α + ß)-Ti6Al4V with respect to metabolic activity, collagen production, matrix formation and matrix mineralisation. No difference was observed in TNF-α and IL-10 cytokine release from CD14+ monocytes as markers of inflammatory response across samples. Cell interdigitation into the porous structure of the PEO coatings was demonstrated and cell processes remained adherent to the porous structure despite rigorous sonication. This study shows that PEO technology can be used to modify the surface of low-modulus ß-type titanium alloys with porous structure facilitating osseointegration, without impeding osteoblast activity or introducing an untoward inflammatory response.


Assuntos
Eletrólise , Osteoblastos/citologia , Gases em Plasma/química , Titânio/farmacologia , Ligas , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/biossíntese , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Osteogênese/efeitos dos fármacos , Oxirredução , Propriedades de Superfície , Fatores de Tempo
15.
In Vivo ; 32(2): 241-247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29475905

RESUMO

BACKGROUND/AIM: Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. MATERIALS AND METHODS: Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. RESULTS: Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. CONCLUSION: PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues.


Assuntos
Eletrólise , Oxirredução , Próteses e Implantes , Titânio/química , Ligas , Animais , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Fenômenos Químicos , Teste de Materiais , Camundongos , Próteses e Implantes/ultraestrutura , Propriedades de Superfície
16.
Mater Sci Eng C Mater Biol Appl ; 71: 1020-1027, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987655

RESUMO

In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and ß-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm2. The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results.


Assuntos
Cerâmica , Materiais Revestidos Biocompatíveis , Durapatita , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Gases em Plasma/química , Zircônio , Animais , Cerâmica/química , Cerâmica/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Oxirredução , Coelhos , Zircônio/química , Zircônio/farmacologia
17.
Materials (Basel) ; 9(5)2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28773443

RESUMO

In the paper, the Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) results of the surface layer formed on pure titanium after plasma electrolytic oxidation (micro arc oxidation) at the voltage of 450 V are shown. As an electrolyte, the mixture of copper nitrate Cu(NO3)2 (10-600 g/L) in concentrated phosphoric acid H3PO4 (98 g/mol) was used. The thickness of the obtained porous surface layer equals about 10 µm, and it consists mainly of titanium phosphates and oxygen with embedded copper ions as a bactericidal agent. The maximum percent of copper in the PEO surface layer was equal to 12.2 ± 0.7 wt % (7.6 ± 0.5 at %), which is the best result that the authors obtained. The top surface layer of all obtained plasma electrolytic oxidation (PEO) coatings consisted most likely mainly of Ti3(PO4)4∙nH3PO4 and Cu3(PO4)2∙nH3PO4 with a small addition of CuP2, CuO and Cu2O.

18.
Acta Biomater ; 23: 354-363, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26073090

RESUMO

Magnesium (Mg) is a promising biomaterial for degradable implant applications that has been extensively studied in vitro and in vivo in recent years. In this study, we developed a procedure that allows an optimized and uniform in vitro assessment of the cytocompatibility of Mg-based materials while respecting the standard protocol DIN EN ISO 10993-5:2009. The mouse fibroblast line L-929 was chosen as the preferred assay cell line and MEM supplemented with 10% FCS, penicillin/streptomycin and 4mM l-glutamine as the favored assay medium. The procedure consists of (1) an indirect assessment of effects of soluble Mg corrosion products in material extracts and (2) a direct assessment of the surface compatibility in terms of cell attachment and cytotoxicity originating from active corrosion processes. The indirect assessment allows the quantification of cell-proliferation (BrdU-assay), viability (XTT-assay) as well as cytotoxicity (LDH-assay) of the mouse fibroblasts incubated with material extracts. Direct assessment visualizes cells attached to the test materials by means of live-dead staining. The colorimetric assays and the visual evaluation complement each other and the combination of both provides an optimized and simple procedure for assessing the cytocompatibility of Mg-based biomaterials in vitro.


Assuntos
Algoritmos , Materiais Biocompatíveis/toxicidade , Fibroblastos/efeitos dos fármacos , Magnésio/toxicidade , Teste de Materiais/normas , Testes de Toxicidade/normas , Animais , Bioensaio/métodos , Bioensaio/normas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/patologia , Guias como Assunto , Técnicas In Vitro , Internacionalidade , Teste de Materiais/métodos , Camundongos , Testes de Toxicidade/métodos
19.
J Biomed Mater Res B Appl Biomater ; 101(6): 1023-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23529975

RESUMO

Reducing the osseointegration time for biomedical titanium implants in surgical patients is an important goal. However, a huge controversy exists over the effectiveness of osseointegration of the surface layer by plasma electrolytic oxidation (PEO), which is a widely favored surface modification for titanium-based implants. In this study, various surface coatings, including anatase-TiO2 (A-TiO2 ), rutile-TiO2 (R-TiO2 ), hydroxyapatite (HAp), strontium-containing hydroxyapatite (Sr-HAp), and dual-phase HAp-TiO2 were synthesized on titanium implants by PEO. A comparative study of osseointegration performance (both in vitro and in vivo) and bone/implant adhesion strength conducted using push-out thrust tests were demonstrated. The in vitro experimental test results agree strongly with the in vivo test results: the dual-phase HAp-TiO2 coating exhibits the superior cell adhesion and differentiation condition among all of the coatings in the in vitro tests and therefore has the highest push-out bonding strength of 5.37 MPa after 12 wk of implantation in the in vivo test. The HAp-containing coatings benefit from its bioactivity and therefore perform the others in terms of long-term osteocyte growth (from the in vitro results) and the extent of osseointegration (from the in vivo results). The dual-phase HAp-TiO2 coating provides the advantages of both the bioactive HAp and structural enhancement by the TiO2 , effectively promoting osseointegration.


Assuntos
Materiais Revestidos Biocompatíveis/química , Osseointegração , Titânio/química , Células 3T3 , Animais , Eletrólise , Teste de Materiais , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Oxirredução , Gases em Plasma , Próteses e Implantes , Coelhos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA