Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 347-373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941603

RESUMO

Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.


Assuntos
COVID-19 , Células Dendríticas , Imunidade Inata , Lúpus Eritematoso Sistêmico , SARS-CoV-2 , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , COVID-19/imunologia , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores Toll-Like/metabolismo , Diferenciação Celular , Linhagem da Célula
2.
Cell ; 186(25): 5536-5553.e22, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029747

RESUMO

Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.


Assuntos
Interferon Tipo I , Tuberculose , Humanos , Camundongos , Animais , Macrófagos/microbiologia , Citocinas , Neutrófilos , Células Dendríticas
3.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32380006

RESUMO

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia
4.
Immunity ; 55(3): 405-422.e11, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35180378

RESUMO

Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.


Assuntos
Linfócitos B , Células Dendríticas , Animais , Contagem de Células , Coreia , Células-Tronco Hematopoéticas , Camundongos
5.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34717796

RESUMO

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Sistemas de Transporte de Aminoácidos/metabolismo , Autoimunidade , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Imunidade , Transdução de Sinais
6.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32454024

RESUMO

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular , DNA/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Animais , Anticorpos Antinucleares/imunologia , Autoantígenos/imunologia , Autoimunidade , Biomarcadores , Ligante de CD40/deficiência , Comunicação Celular/genética , Comunicação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endodesoxirribonucleases/deficiência , Imunofluorescência , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Knockout , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
7.
Immunity ; 50(1): 37-50, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650380

RESUMO

Plasmacytoid dendritic cells (pDCs) are a unique sentinel cell type that can detect pathogen-derived nucleic acids and respond with rapid and massive production of type I interferon. This review summarizes our current understanding of pDC biology, including transcriptional regulation, heterogeneity, role in antiviral immune responses, and involvement in immune pathology, particularly in autoimmune diseases, immunodeficiency, and cancer. We also highlight the remaining gaps in our knowledge and important questions for the field, such as the molecular basis of unique interferon-producing capacity of pDCs. A better understanding of cell type-specific positive and negative control of pDC function should pave the way for translational applications focused on this immune cell type.


Assuntos
Doenças Autoimunes/imunologia , Diferenciação Celular , Células Dendríticas/fisiologia , Neoplasias/imunologia , Viroses/imunologia , Animais , Regulação da Expressão Gênica , Humanos , Imunidade Celular , Interferon Tipo I/metabolismo
8.
Immunol Rev ; 323(1): 241-256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553621

RESUMO

The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.


Assuntos
Doenças Autoimunes , Autoimunidade , Células Dendríticas , Inflamação , Interferon Tipo I , Transdução de Sinais , Receptores Toll-Like , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Inflamação/imunologia , Receptores Toll-Like/metabolismo , Doenças Autoimunes/imunologia , Interferon Tipo I/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Tolerância Imunológica , Imunomodulação , Quimiocinas/metabolismo
9.
Immunity ; 48(4): 730-744.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669251

RESUMO

Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.


Assuntos
Autorrenovação Celular/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Células 3T3 , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Células Dendríticas/citologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Repressoras , Transdução de Sinais/imunologia , Fator de Transcrição 4/biossíntese , Fatores de Transcrição/biossíntese
10.
Proc Natl Acad Sci U S A ; 121(12): e2312404121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478694

RESUMO

Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) after sensing viral/bacterial RNA or DNA by toll-like receptor (TLR) 7 or TLR9, respectively. However, aberrant pDCs activation can cause adverse effects on the host and contributes to the pathogenesis of type I IFN-related autoimmune diseases. Here, we show that heparin interacts with the human pDCs-specific blood dendritic cell antigen 2 (BDCA-2) but not with related lectins such as DCIR or dectin-2. Importantly, BDCA-2-heparin interaction depends on heparin sulfation and receptor glycosylation and results in inhibition of TLR9-driven type I IFN production in primary human pDCs and the pDC-like cell line CAL-1. This inhibition is mediated by unfractionated and low-molecular-weight heparin, as well as endogenous heparin from plasma, suggesting that the local blood environment controls the production of IFN-α in pDCs. Additionally, we identified an activation-dependent soluble form of BDCA-2 (solBDCA-2) in human plasma that functions as heparin antagonist and thereby increases TLR9-driven IFN-α production in pDCs. Of importance, solBDCA-2 levels in the serum were increased in patients with scrub typhus (an acute infectious disease caused by Orientia tsutsugamushi) compared to healthy control subjects and correlated with anti-dsDNA antibodies titers. In contrast, solBDCA-2 levels in plasma from patients with bullous pemphigoid or psoriasis were reduced. In summary, this work identifies a regulatory network consisting of heparin, membrane-bound and solBDCA-2 modulating TLR9-driven IFN-α production in pDCs. This insight into pDCs function and regulation may have implications for the treatment of pDCs-related autoimmune diseases.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Humanos , Interferon Tipo I/metabolismo , Heparina/metabolismo , Receptor Toll-Like 9/metabolismo , Células Dendríticas , Doenças Autoimunes/metabolismo
11.
Immunity ; 46(1): 65-77, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27986456

RESUMO

The cell fate decision between interferon-producing plasmacytoid DC (pDC) and antigen-presenting classical DC (cDC) is controlled by the E protein transcription factor TCF4 (E2-2). We report that TCF4 comprises two transcriptional isoforms, both of which are required for optimal pDC development in vitro. The long Tcf4 isoform is expressed specifically in pDCs, and its deletion in mice impaired pDCs development and led to the expansion of non-canonical CD8+ cDCs. The expression of Tcf4 commenced in progenitors and was further upregulated in pDCs, correlating with stage-specific activity of multiple enhancer elements. A conserved enhancer downstream of Tcf4 was required for its upregulation during pDC differentiation, revealing a positive feedback loop. The expression of Tcf4 and the resulting pDC differentiation were selectively sensitive to the inhibition of enhancer-binding BET protein activity. Thus, lineage-specifying function of E proteins is facilitated by lineage-specific isoform expression and by BET-dependent feedback regulation through distal regulatory elements.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem da Célula , Imunoprecipitação da Cromatina , Células Dendríticas/citologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Fator de Transcrição 4 , Transcriptoma
12.
Immunity ; 47(6): 1037-1050.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29221729

RESUMO

Given the limited efficacy of clinical approaches that rely on ex vivo generated dendritic cells (DCs), it is imperative to design strategies that harness specialized DC subsets in situ. This requires delineating the expression of surface markers by DC subsets among individuals and tissues. Here, we performed a multiparametric phenotypic characterization and unbiased analysis of human DC subsets in blood, tonsil, spleen, and skin. We uncovered previously unreported phenotypic heterogeneity of human cDC2s among individuals, including variable expression of functional receptors such as CD172a. We found marked differences in DC subsets localized in blood and lymphoid tissues versus skin, and a striking absence of the newly discovered Axl+ DCs in the skin. Finally, we evaluated the capacity of anti-receptor monoclonal antibodies to deliver vaccine components to skin DC subsets. These results offer a promising path for developing DC subset-specific immunotherapies that cannot be provided by transcriptomic analysis alone.


Assuntos
Antígenos de Diferenciação/imunologia , Variação Biológica Individual , Células Dendríticas/imunologia , Fenótipo , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Imunológicos/imunologia , Pele/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação/genética , Biomarcadores/análise , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/biossíntese , Citofotometria/métodos , Células Dendríticas/citologia , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Imunoterapia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Especificidade de Órgãos , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Receptores Imunológicos/genética , Pele/citologia , Baço/citologia , Baço/imunologia , Receptor Tirosina Quinase Axl
13.
Eur J Immunol ; 54(7): e2350955, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587967

RESUMO

Type I interferons (IFN-Is) are key in fighting viral infections, but also serve major roles beyond antiviral immunity. Crucial is the tight regulation of IFN-I responses, while excessive levels are harmful to the cells. In essence, immune responses are generated by single cells making their own decisions, which are based on the signals they perceive. Additionally, immune cells must anticipate the future state of their environment, thereby weighing the costs and benefits of each possible outcome, in the presence of other potentially competitive decision makers (i.e., IFN-I producing cells). A rather new cellular communication mechanism called quorum sensing describes the effect of cell density on cellular secretory behaviors, which fits well with matching the right amount of IFN-Is produced to fight an infection. More competitive decision makers must contribute relatively less and vice versa. Intrigued by this concept, we assessed the effects of immune quorum sensing in pDCs, specialized immune cells known for their ability to mass produce IFN-Is. Using conventional microwell assays and droplet-based microfluidics assays, we were able the characterize the effect of quorum sensing in human primary immune cells in vitro. These insights open new avenues to manipulate IFN-I response dynamics in pathological conditions affected by aberrant IFN-I signaling.


Assuntos
Células Dendríticas , Interferon Tipo I , Percepção de Quorum , Humanos , Células Dendríticas/imunologia , Percepção de Quorum/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Comunicação Celular/imunologia , Células Cultivadas
14.
Immunity ; 45(5): 1093-1107, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27793594

RESUMO

Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-ß (IFN-α/ß) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/ß production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/ß-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection.


Assuntos
Imunidade Adaptativa/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Malária/imunologia , Transdução de Sinais/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Plasmodium yoelii , Reação em Cadeia da Polimerase
15.
J Allergy Clin Immunol ; 153(4): 1083-1094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110059

RESUMO

BACKGROUND: Impaired interferon response and allergic sensitization may contribute to virus-induced wheeze and asthma development in young children. Plasmacytoid dendritic cells (pDCs) play a key role in antiviral immunity as critical producers of type I interferons. pDCs also express the high-affinity IgE receptor through which type I interferon production may be negatively regulated. Whether antiviral function of pDCs is associated with recurrent episodes of wheeze in young children is not well understood. OBJECTIVE: We sought to evaluate the phenotype and function of circulating pDCs in children with a longitudinally defined wheezing phenotype. METHODS: We performed multiparameter flow cytometry on PBMCs from 38 children presenting to the emergency department with an acute episode of respiratory wheeze and 19 controls. RNA sequencing on isolated pDCs from the same individuals was also performed. For each subject, their longitudinal exacerbation phenotype was determined using the Western Australia public hospital database. RESULTS: We observed a significant depletion of circulating pDCs in young children with a persistent phenotype of wheeze. The same individuals also displayed upregulation of the FcεRI on their pDCs. Based on transcriptomic analysis, pDCs from these individuals did not mount a robust systemic antiviral response as observed in children who displayed a nonrecurrent wheezing phenotype. CONCLUSIONS: Our data suggest that circulating pDC phenotype and function are altered in young children with a persistent longitudinal exacerbation phenotype. Expression of high-affinity IgE receptor is increased and their function as major interferon producers is impaired during acute exacerbations of wheeze.


Assuntos
Asma , Interferon Tipo I , Criança , Humanos , Pré-Escolar , Receptores de IgE , Sons Respiratórios , Interferon Tipo I/metabolismo , Células Dendríticas
16.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892317

RESUMO

The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.


Assuntos
Modelos Animais de Doenças , Camundongos Knockout , Escleroderma Sistêmico , Receptor 7 Toll-Like , Receptor Toll-Like 9 , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Camundongos , Bleomicina/efeitos adversos , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Pele/patologia , Pele/metabolismo , Pele/imunologia , Fibrose , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/etiologia , Glicoproteínas de Membrana
17.
Clin Immunol ; 251: 109638, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149118

RESUMO

According to epidemiological research, skin autoimmune diseases are more prevalent among black Americans. We postulated that pigment-producing melanocytes may contribute to local immune regulation in the microenvironment. We examined murine epidermal melanocytes in vitro to determine the role of pigment production in immune responses mediated by dendritic cell (DC) activation. Our study revealed that darkly pigmented melanocytes produce more IL-3 and the pro-inflammatory cytokines, IL-6 and TNF-α, and consequently induce plasmacytoid DC (pDC) maturation. Additionally, we demonstrate that low pigment-associated fibromodulin (FMOD) interferes with cytokine secretion and subsequent pDC maturation.


Assuntos
Citocinas , Interleucina-3 , Humanos , Animais , Camundongos , Interleucina-3/metabolismo , Interleucina-3/farmacologia , Fibromodulina/metabolismo , Citocinas/metabolismo , Pigmentação , Células Dendríticas
18.
Clin Immunol ; 255: 109754, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678720

RESUMO

Systemic autoimmune diseases are characterized by increased production of type I interferon (IFN-1) and upregulation of IFN-1-inducible genes, suggesting an important role of the IFN-1 pathway in their pathogenesis. Recent studies have demonstrated increased IFN-1 expression in both primary and secondary antiphospholipid syndrome (APS), along with increased toll-like receptor type 9 activity and plasmacytoid dendritic cell function. The increasing knowledge of the association between IFN-1 and APS pathology may provide a rationale for conducting clinical trials to assess the efficacy of IFN-1-targeting drugs in reducing APS-related complications. In this narrative review, we summarize the current knowledge on the role of IFN-1 in APS pathogenesis, explore its clinical implications, and examine the existing evidence regarding therapeutic options that have been investigated to date.


Assuntos
Síndrome Antifosfolipídica , Interferon Tipo I , Humanos , Regulação para Cima , Células Dendríticas , Interferons/genética
19.
Br J Haematol ; 200(5): 545-555, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606610

RESUMO

In this article, we describe three broad pathologic presentations of plasmacytoid dendritic cells (pDCs) that may be encountered in clinical practice, in which an association between pDCs and myeloid neoplasms is identified: (1) myeloid neoplasms with mature pDC expansion, most commonly seen in chronic myelomonocytic leukaemia (CMML); (2) myeloid neoplasms with pDC differentiation, in which pDCs show a spectrum of maturation from early immature pDCs to mature forms, most commonly seen in acute myeloid leukaemia (AML); (3) myeloid neoplasms associated with blastic plasmacytoid dendritic cell neoplasm (BPDCN), either stemming from the same precursor or representing an independent clonal process. Additionally, we also discuss AML with pDC-like phenotype, in which myeloblasts show immunophenotypic features that may mimic those seen in pDCs. Using these presentations, we provide a diagnostic algorithm for appropriate pathologic classification, while attempting to clarify and homogenize nomenclatures pertaining to different biologic states of pDCs.


Assuntos
Leucemia Mielomonocítica Crônica , Transtornos Mieloproliferativos , Humanos , Leucemia Mielomonocítica Crônica/diagnóstico , Leucemia Mielomonocítica Crônica/patologia , Fenótipo , Diferenciação Celular , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/patologia , Células Dendríticas/patologia
20.
Gastroenterology ; 163(2): 411-425.e4, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35487288

RESUMO

BACKGROUND & AIMS: A subset of myeloid-derived suppressor cells (MDSCs) that express murine Schlafen4 (SLFN4) or its human ortholog SLFN12L polarize in the Helicobacter-inflamed stomach coincident with intestinal or spasmolytic polypeptide-expressing metaplasia. We propose that individuals with a more robust response to damage-activated molecular patterns and increased Toll-like receptor 9 (TLR9) expression are predisposed to the neoplastic complications of Helicobacter infection. METHODS: A mouse or human Transwell co-culture system composed of dendritic cells (DCs), 2-dimensional gastric epithelial monolayers, and Helicobacter were used to dissect the cellular source of interferon-α (IFNα) in the stomach by flow cytometry. Conditioned media from the co-cultures polarized primary myeloid cells. MDSC activity was determined by T-cell suppression assays. In human subjects with intestinal metaplasia or gastric cancer, the rs5743836 TLR9T>C variant was genotyped and linked to TLR9, IFNα, and SLFN12L expression by immunohistochemistry. Nuclear factor-κB binding to the TLR9 C allele was determined by electrophoretic mobility shift assays. RESULTS: Helicobacter infection induced gastric epithelial and plasmacytoid DC expression of TLR9 and IFNα. Co-culturing primary mouse or human cells with DCs and Helicobacter induced TLR9, IFNα secretion, and SLFN+-MDSC polarization. Neutralizing IFNα in vivo mitigated Helicobacter-induced spasmolytic polypeptide-expressing metaplasia. The TLR9 minor C allele creates a nuclear factor-κB binding site associated with higher levels of TLR9, IFNα, and SLFN12L in Helicobacter-infected stomachs that correlated with a greater incidence of metaplasias and cancer. CONCLUSIONS: TLR9 plays an essential role in the production of IFNα and polarization of SLFN+ MDSCs on Helicobacter infection. Subjects carrying the rs5743836 TLR9 minor C allele are predisposed to neoplastic complications if chronically infected.


Assuntos
Infecções por Helicobacter , Células Supressoras Mieloides , Neoplasias Gástricas , Receptor Toll-Like 9 , Animais , Helicobacter , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Humanos , Interferon-alfa , Metaplasia , Camundongos , NF-kappa B/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Receptor 4 Toll-Like , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA