Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(9): e202112576, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34845815

RESUMO

Using a mechanism-based solvent-free tandem catalytic approach, commodity polyester plastics such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are rapidly and selectively deconstructed by combining the two air- and moisture-stable catalysts, Hf(OTf)4 and Pd/C, under 1 atm H2 , affording terephthalic acid (or naphthalene dicarboxylic acid for PEN) and ethane (or butane for PBT) in essentially quantitative yield. This process is effective for both laboratory grade and waste plastics, and comingled polypropylene remains unchanged. Combined experimental and DFT mechanistic analyses indicate that Hf(OTf)4 catalyzes a mildly exergonic retro-hydroalkoxylation reaction in which an alkoxy C-O bond is first cleaved, yielding a carboxylic acid and alkene, and this process is closely coupled to an exergonic olefin hydrogenation step, driving the overall reaction forward.

2.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696960

RESUMO

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Assuntos
Biodegradação Ambiental , Hidrolases de Éster Carboxílico , Poliuretanos , Reciclagem , Poliuretanos/química , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Burkholderiales/enzimologia , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Plásticos/química , Plásticos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Poliésteres
3.
Adv Sci (Weinh) ; 11(25): e2403002, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626364

RESUMO

Polyester plastics, constituting over 10% of the total plastic production, are widely used in packaging, fiber, single-use beverage bottles, etc. However, their current depolymerization processes face challenges such as non-broad spectrum recyclability, lack of diversified high-value-added depolymerization products, and crucially high energy consumption. Herein, an efficient strategy is developed for dismantling the compact structure of polyester plastics to achieve diverse monomer recovery. Polyester plastics undergo swelling and decrystallization with a low depolymerization energy barrier via synergistic effects of polyfluorine/hydrogen bonding, which is further demonstrated via density functional theory calculations. The swelling process is elucidated through scanning electron microscopy analysis. Obvious destruction of the crystalline region is demonstrated through X-ray crystal diffractometry curves. PET undergoes different aminolysis efficiently, yielding nine corresponding high-value-added monomers via low-energy upcycling. Furthermore, four types of polyester plastics and five types of blended polyester plastics are closed-loop recycled, affording diverse monomers with exceeding 90% yields. Kilogram-scale depolymerization of real polyethylene terephthalate (PET) waste plastics is successfully achieved with a 96% yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA