Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genet Med ; 25(4): 100012, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36637017

RESUMO

PURPOSE: TTN truncating variants (TTNtvs) represent the largest known genetic cause of dilated cardiomyopathies (DCMs), however their penetrance for DCM in general populations is low. More broadly, patients with cardiomyopathies (CMs) often exhibit other cardiac conditions, such as atrial fibrillation (Afib), which has also been linked to TTNtvs. This retrospective analysis aims to characterize the relationship between different cardiac conditions in those with TTNtvs and identify individuals with the highest risk of DCM. METHODS: In this work we leverage longitudinal electronic health record and exome sequencing data from approximately 450,000 individuals in 2 health systems to statistically confirm and pinpoint the genetic footprint of TTNtv-related diagnoses aside from CM, such as Afib, and determine whether vetting additional significantly associated phenotypes better stratifies CM risk across those with TTNtvs. We focused on TTNtvs in exons with a percentage spliced in >90% (hiPSI TTNtvs), a representation of constitutive cardiac expression. RESULTS: When controlling for CM and Afib, other cardiac conditions retained only nominal association with TTNtvs. A sliding window analysis of TTNtvs across the locus confirms that the association is specific to hiPSI exons for both CM and Afib, with no meaningful associations in percent spliced in ≤90% exons (loPSI TTNtvs). The combination of hiPSI TTNtv status and early Afib diagnosis (before age 60) found a subset of TTNtv individuals at high risk for CM. The prevalence of CM in this subset was 33%, a rate that was 3.5 fold higher than that in individuals with hiPSI TTNtvs (9% prevalence), 5-fold higher than that in individuals without TTNtvs with early Afib (6% prevalence), and 80-fold higher than that in the general population. CONCLUSION: Our retrospective analyses revealed that those with hiPSI TTNtvs and early Afib (∼1/2900) have a high prevalence of CM (33%), far exceeding that in other individuals with TTNtvs and in those without TTNtvs with an early Afib diagnosis. These results show that combining phenotypic information along with genomic population screening can identify patients at higher risk for progressing to symptomatic heart failure.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Cardiomiopatia Dilatada , Cardiopatias , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Estudos Retrospectivos , Prevalência , Cardiomiopatias/epidemiologia , Cardiomiopatias/genética , Conectina/genética , Conectina/metabolismo , Cardiomiopatia Dilatada/epidemiologia , Cardiomiopatia Dilatada/genética
2.
Eur Heart J ; 43(34): 3243-3254, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788414

RESUMO

AIMS: The aim of this study was to assess the impact and cost-effectiveness of offering population genomic screening to all young adults in Australia to detect heterozygous familial hypercholesterolaemia (FH). METHODS AND RESULTS: We designed a decision analytic Markov model to compare the current standard of care for heterozygous FH diagnosis in Australia (opportunistic cholesterol screening and genetic cascade testing) with the alternate strategy of population genomic screening of adults aged 18-40 years to detect pathogenic variants in the LDLR/APOB/PCSK9 genes. We used a validated cost-adaptation method to adapt findings to eight high-income countries. The model captured coronary heart disease (CHD) morbidity/mortality over a lifetime horizon, from healthcare and societal perspectives. Risk of CHD, treatment effects, prevalence, and healthcare costs were estimated from published studies. Outcomes included quality-adjusted life years (QALYs), costs and incremental cost-effectiveness ratio (ICER), discounted 5% annually. Sensitivity analyses were undertaken to explore the impact of key input parameters on the robustness of the model. Over the lifetime of the population (4 167 768 men; 4 129 961 women), the model estimated a gain of 33 488years of life lived and 51 790 QALYs due to CHD prevention. Population genomic screening for FH would be cost-effective from a healthcare perspective if the per-test cost was ≤AU$250, yielding an ICER of

Assuntos
Doença das Coronárias , Hiperlipoproteinemia Tipo II , Análise Custo-Benefício , Feminino , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Masculino , Metagenômica , Pró-Proteína Convertase 9 , Anos de Vida Ajustados por Qualidade de Vida , Adulto Jovem
3.
Am J Med Genet C Semin Med Genet ; 187(1): 83-94, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33576083

RESUMO

Exome and genome sequencing are increasingly utilized in research studies and clinical care and can provide clinically relevant information beyond the initial intent for sequencing, including medically actionable secondary findings. Despite ongoing debate about sharing this information with patients and participants, a growing number of clinical laboratories and research programs routinely report secondary findings that increase the risk for selected diseases. Recently, there has been a push to maximize the potential benefit of this practice by implementing proactive genomic screening at the population level irrespective of medical history, but the feasibility of deploying population-scale proactive genomic screening requires scaling key elements of the genomic data evaluation process. Herein, we describe the motivation, development, and implementation of a population-scale variant-first screening pipeline combining bioinformatics-based filtering with a manual review process to screen for clinically relevant findings in research exomes generated through the DiscovEHR collaboration within Geisinger's MyCode® research project. Consistent with other studies, this pipeline yields a screen-positive detection rate between 2.1 and 2.6% (depending on inclusion of those with prior indication-based testing) in 130,048 adult MyCode patient-participants screened for clinically relevant findings in 60 genes. Our variant-first pipeline affords cost and time savings by filtering out negative cases, thereby avoiding analysis of each exome one-by-one, as typically employed in the diagnostic setting. While research is still needed to fully appreciate the benefits of population genomic screening, MyCode provides the first demonstration of a program at scale to help shape how population genomic screening is integrated into routine clinical care.


Assuntos
Sequenciamento do Exoma , Exoma , Genômica , Adulto , Humanos , Estudos Longitudinais
4.
Genet Med ; 21(9): 1958-1968, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30773532

RESUMO

PURPOSE: To consider the impact and cost-effectiveness of offering preventive population genomic screening to all young adults in a single-payer health-care system. METHODS: We modeled screening of 2,688,192 individuals, all adults aged 18-25 years in Australia, for pathogenic variants in BRCA1/BRCA2/MLH1/MSH2 genes, and carrier screening for cystic fibrosis (CF), spinal muscular atrophy (SMA), and fragile X syndrome (FXS), at 71% testing uptake using per-test costs ranging from AUD$200 to $1200 (~USD$140 to $850). Investment costs included genetic counseling, surveillance, and interventions (reimbursed only) for at-risk individuals/couples. Cost-effectiveness was defined below AUD$50,000/DALY (disability-adjusted life year) prevented, using an incremental cost-effectiveness ratio (ICER), compared with current targeted testing. Outcomes were cancer incidence/mortality, disease cases, and treatment costs reduced. RESULTS: Population screening would reduce variant-attributable cancers by 28.8%, cancer deaths by 31.2%, and CF/SMA/FXS cases by 24.8%, compared with targeted testing. Assuming AUD$400 per test, investment required would be between 4 and 5 times higher than current expenditure. However, screening would lead to substantial savings in medical costs and DALYs prevented, at a highly cost-effective ICER of AUD$4038/DALY. At AUD$200 per test, screening would approach cost-saving for the health system (ICER = AUD$22/DALY). CONCLUSION: Preventive genomic screening in early adulthood would be highly cost-effective in a single-payer health-care system, but ethical issues must be considered.


Assuntos
Fibrose Cística/diagnóstico , Síndrome do Cromossomo X Frágil/diagnóstico , Atrofia Muscular Espinal/diagnóstico , Neoplasias/diagnóstico , Adolescente , Adulto , Austrália/epidemiologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Análise Custo-Benefício/economia , Fibrose Cística/epidemiologia , Fibrose Cística/genética , Atenção à Saúde/economia , Feminino , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Metagenômica/economia , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Neoplasias/epidemiologia , Neoplasias/genética , Anos de Vida Ajustados por Qualidade de Vida , Adulto Jovem
5.
J Pers Med ; 14(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202032

RESUMO

The IMPACT-FH study implemented strategies (packet, chatbot, direct contact) to promote family member cascade testing for familial hypercholesterolemia (FH). We evaluated the impact of genetic counseling (GC) on medical outcomes, strategy selection, and cascade testing. Probands (i.e., patients with FH) were recommended to complete GC and select sharing strategies. Comparisons were performed for both medical outcomes and strategy selection between probands with or without GC. GEE models for Poisson regression were used to examine the relationship between proband GC completion and first-degree relative (FDR) cascade testing. Overall, 46.3% (81/175) of probands completed GC. Probands with GC had a median LDL-C reduction of -13.0 mg/dL (-61.0, 4.0) versus -1.0 mg/dL (-16.0, 17.0) in probands without GC (p = 0.0054). Probands with and without GC selected sharing strategies for 65.3% and 40.3% of FDRs, respectively (p < 0.0001). Similarly, 27.1% of FDRs of probands with GC completed cascade testing, while 12.0% of FDRs of probands without GC completed testing (p = 0.0043). Direct contact was selected for 47 relatives in total and completed for 39, leading to the detection of 18 relatives with FH. Proband GC was associated with improved medical outcomes and increased FDR cascade testing. Direct contact effectively identified FH cases for the subset who participated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA