Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 375(2): 10-19, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639060

RESUMO

BACKGROUND: Müller cell gliosis not only plays an important physiological role by maintaining retinal neuronal homeostasis but is also associated with multiple pathological events in the retina, including optic nerve crush (ONC) injury. Modulating Müller cell gliosis contributes to the creation of a permissive environment for neuronal survival. However, the underlying mechanism of Müller cell gliosis has remained elusive. OBJECTIVE: To investigate the underlying mechanism of Müller cell gliosis after ONC. METHODS: Rats with ONC injury were transfected with miRNA-21 (miR-21) agomir (overexpressing miR-21) or antagomir (inhibiting miR-21) via intravitreous injection. Immunofluorescence and western blotting were performed to confirm the effects of miR-21 on Müller cell gliosis. The retinal nerve fiber layer (RNFL) thickness was measured using optical coherence tomography and the positive scotopic threshold response (pSTR) was recorded using electroretinogram. RESULTS: In the acute phase (14 days) after ONC, compared with the crushed group, inhibiting miR-21 promoted Müller cell gliosis, exhibiting thicker processes and increased GFAP expression. In the chronic phase (35 days), inhibiting miR-21 ameliorated Müller cell gliosis, which exhibited thicker and denser processes and increased GFAP expression. Retinal ganglion cell (RGC) counts in retinas showed that the number of surviving RGCs increased significantly in the antagomir group. The thickness of the RNFL increased significantly, and pSTR showed significant preservation of the amplitudes in the antagomir group. CONCLUSIONS: Inhibition of miR-21 promotes RGC survival, RNFL thickness and the recovery of RGC function by modulating Müller cell gliosis after ONC.


Assuntos
Células Ependimogliais/metabolismo , Gliose/metabolismo , MicroRNAs/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Gliose/etiologia , Gliose/genética , Masculino , MicroRNAs/metabolismo , Compressão Nervosa , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/genética , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/fisiologia
2.
Front Immunol ; 11: 585918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281816

RESUMO

Retinal ischemia/reperfusion injury (RI) is a common cause of irreversible visual impairment and blindness in elderly and critical unmet medical need. While no effective treatment is available for RI, microglial activation and local immune responses in the retina are thought to play important roles in the pathophysiology of neurodegeneration. While survival and activation of microglia depend critically on colony-stimulating factor receptor (CSF-1R) signaling, it remains unclear if targeting the retinal immune microenvironments by CSF-1RAb after RI is sufficient to rescue vision and present a potentially effective therapy. Here we used rodent models of RI and showed that retinal ischemia induced by acute elevation of intraocular pressure triggered an early activation of microglia and macrophages in the retina within 12 h. This was followed by lymphocyte infiltration and increased production of pro-inflammatory cytokines. Intravitreal injection of CSF-1R neutralizing antibody (CSF-1RAb) after RI significantly blocked microglial activation and the subsequent T cell recruitment. This also led to improved retinal ganglion cell survival and function measured by cell quantification and electroretinogram positive scotopic threshold responses, as well as increased visual acuity and contrast sensitivity as assessed by optomotor reflex-based assays, when compared to the isotype-treated control group. Moreover, the administration of CSF-1RAb efficiently attenuated inflammatory responses and activation of human microglia in culture, suggesting a therapeutic target with human relevance. These results, together with the existing clinical safety profiles, support that CSF-1RAb may present a promising therapeutic avenue for RI, a currently untreatable condition, by targeting microglia and the immune microenvironment in the retina to facilitate neural survival and visual function recovery.


Assuntos
Anticorpos Neutralizantes/farmacologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Neuropatia Óptica Isquêmica/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Microambiente Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropatia Óptica Isquêmica/patologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Retina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA