Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 101(1): 259-301, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584191

RESUMO

Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.


Assuntos
Sistema Nervoso Central/fisiopatologia , Neuralgia/fisiopatologia , Neuralgia/terapia , Animais , Humanos , Fibras Nervosas , Nervos Periféricos/fisiopatologia , Sistema Nervoso Periférico/fisiopatologia
2.
J Neurosci Res ; 98(3): 437-447, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30152529

RESUMO

In Bioluminescent Optogenetics (BL-OG) a biological, rather than a physical, light source is used to activate light-sensing opsins, such as channelrhodopsins or pumps. This is commonly achieved by utilizing a luminopsin (LMO), a fusion protein of a light-emitting luciferase tethered to a light-sensing opsin. Light of the wavelength matching the activation peak of the opsin is emitted by the luciferase upon application of its small molecule luciferin, resulting in activation of the fused opsin and subsequent effects on membrane potential. Using optimized protocols for culturing, transforming, and testing primary neurons in multi electrode arrays, we systematically defined parameters under which changes in neuronal activity are specific to bioluminescent activation of opsins, rather than due to off-target effects of either the luciferin or its solvent on neurons directly, or on opsins directly. We further tested if there is a direct effect of bioluminescence on neurons. Critical for assuring specific BL-OG effects are testing the concentration and formulation of the luciferin against proper controls, including testing effects of vehicle on LMO expressing and of luciferin on nonLMO expressing targets.


Assuntos
Luciferases , Medições Luminescentes , Neurônios/fisiologia , Opsinas , Optogenética/instrumentação , Optogenética/métodos , Animais , Eletrodos Implantados , Feminino , Luciferases/genética , Luciferases/fisiologia , Proteínas Luminescentes , Masculino , Potenciais da Membrana , Opsinas/genética , Opsinas/fisiologia , Cultura Primária de Células , Ratos Sprague-Dawley
3.
Virol J ; 15(1): 79, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703263

RESUMO

BACKGROUND: Zika virus infection in new born is linked to congenital syndromes, especially microcephaly. Studies have shown that these neuropathies are the result of significant death of neuronal progenitor cells in the central nervous system of the embryo, targeted by the virus. Although cell death via apoptosis is well acknowledged, little is known about possible pathogenic cellular mechanisms triggering cell death in neurons. METHODS: We used in vitro embryonic mouse primary neuron cultures to study possible upstream cellular mechanisms of cell death. Neuronal networks were grown on microelectrode array and electrical activity was recorded at different times post Zika virus infection. In addition to this method, we used confocal microscopy and Q-PCR techniques to observe morphological and molecular changes after infection. RESULTS: Zika virus infection of mouse primary neurons triggers an early spiking excitation of neuron cultures, followed by dramatic loss of this activity. Using NMDA receptor antagonist, we show that this excitotoxicity mechanism, likely via glutamate, could also contribute to the observed nervous system defects in human embryos and could open new perspective regarding the causes of adult neuropathies. CONCLUSIONS: This model of excitotoxicity, in the context of neurotropic virus infection, highlights the significance of neuronal activity recording with microelectrode array and possibility of more than one lethal mechanism after Zika virus infection in the nervous system.


Assuntos
Potenciais de Ação/fisiologia , Morte Celular , Rede Nervosa/virologia , Neurônios/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Encéfalo/citologia , Encéfalo/virologia , Células Cultivadas , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Rede Nervosa/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais/genética , Transmissão Sináptica , Replicação Viral , Infecção por Zika virus/patologia
4.
Eur J Neurosci ; 46(6): 2190-2202, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28834578

RESUMO

Iatrogenic trigeminal nerve injuries remain a common and complex clinical problem. Satellite glial cell (SGC) activation, associated phosphorylation of extracellular signal-regulated kinase (ERK), and neuropeptide expression in the trigeminal ganglion (TG) are known to be involved in trigeminal neuropathic pain related to trigeminal nerve injury. However, the involvement of these molecules in orofacial neuropathic pain mechanisms is still unknown. Phosphorylation of ERK1/2 in lingual nerve crush (LNC) rats was observed in SGCs. To evaluate the role of neuron-SGC interactions under neuropathic pain, calcitonin gene-related peptide (CGRP)-immunoreactive (IR), phosphorylated ERK1/2 (pERK1/2)-IR and glial fibrillary acidic protein (GFAP)-IR cells in the TG were studied in LNC rats. The number of CGRP-IR neurons and neurons encircled with pERK1/2-IR SGCs was significantly larger in LNC rats compared with sham rats. The percentage of large-sized CGRP-IR neurons was significantly higher in LNC rats. The number of CGRP-IR neurons, neurons encircled with pERK1/2-IR SGCs, and neurons encircled with GFAP-IR SGCs was decreased following CGRP receptor blocker CGRP8-37 or mitogen-activated protein kinase/ERK kinase 1 inhibitor PD98059 administration into the TG after LNC. Reduced thresholds to mechanical and heat stimulation to the tongue in LNC rats were also significantly recovered following CGRP8-37 or PD98059 administration. The present findings suggest that CGRP released from TG neurons activates SGCs through ERK1/2 phosphorylation and TG neuronal activity is enhanced, resulting in the tongue hypersensitivity associated with lingual nerve injury. The phenotypic switching of large myelinated TG neurons expressing CGRP may account for the pathogenesis of tongue neuropathic pain.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuralgia/metabolismo , Neurônios/metabolismo , Células Satélites Perineuronais/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Nervo Lingual/metabolismo , Nervo Lingual/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuralgia/fisiopatologia , Neurônios/fisiologia , Fenótipo , Ratos , Ratos Sprague-Dawley , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Células Satélites Perineuronais/fisiologia , Gânglio Trigeminal/citologia , Gânglio Trigeminal/fisiologia
5.
Audiol Neurootol ; 22(2): 96-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28817812

RESUMO

HYPOTHESIS: The miR-34a/Bcl-2 signaling pathway may play a role in the mechanisms related to age-related hearing loss (AHL) in the auditory cortex. BACKGROUND: The auditory cortex plays a key role in the recognition and processing of complex sound. It is difficult to explain why patients with AHL have poor speech recognition, so increasing numbers of studies have focused on its central change. Although micro (mi)RNAs in the central nervous system have recently been increasingly reported to be associated with age-related diseases, the molecular mechanisms of AHL in the auditory cortex are not fully understood. METHODS: The auditory brainstem response was used to assess the hearing ability of C57BL/6 mice, and q-PCR, immunohistochemistry, and Western blotting were used to detect the expression levels of miR-34a and Bcl-2 in the mouse auditory cortex. TUNEL and DNA fragmentation were adopted to detect the apoptosis of neurons in the auditory cortex. To verify the relationship of miR-34a and Bcl-2, we transfected an miR-34a mimic or miR-34a inhibitor into primary auditory cortex neurons. RESULTS: In this study, miR-34a/Bcl-2 signaling was examined in auditory cortex neurons during aging. miR-34a and apoptosis increased in the auditory cortex neurons of C57BL/6 mice with aging, whereas an age-related decrease in Bcl-2 was determined. In the primary neurons of the auditory cortex, miR-34a overexpression inhibited Bcl-2, leading to an increase in apoptosis. Moreover, miR-34a knockdown increased Bcl-2 expression and diminished apoptosis. CONCLUSION: Our results support a link between age-related apoptosis in auditory cortex neurons and miR-34a/Bcl-2 signaling, which may serve as a potential mechanism of the expression of AHL in the auditory cortex.


Assuntos
Apoptose/genética , Córtex Auditivo/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Presbiacusia/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Córtex Auditivo/citologia , Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição , Perda Auditiva , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Presbiacusia/metabolismo , Presbiacusia/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/genética
6.
Cryobiology ; 72(2): 141-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26802735

RESUMO

This study aimed to identify optimal mild hypothermic (MH) condition that would provide the best protection for neuronal cells undergoing severe ischemia and hypoxia. We also sought to determine if longer exposure to mild hypothermia would confer greater protection to severe ischemia and hypoxia in these cells. We designed a primary neuronal cell model for severe glucose and oxygen deprivation/reoxygenation (OGD/R) to simulate the hypoxic-ischemic condition of patients with severe stroke, trauma, or hypoxic-ischemic encephalopathy. We evaluated the viability of these neurons following 3 h of OGD/R and variable MH conditions including different temperatures and durations of OGD/R exposure. We further explored the effects of the optimal MH condition on several parts which are associated with mitochondrial apoptosis pathway: intracellular calcium, reactive oxygen species (ROS), and mitochondrial transmembrane potential (MTP). The results of this study showed that the apoptosis proportion (AP) and cell viability proportion (CVP) after OGD/R significantly varied depending on which MH condition cells were exposed to (p < 0.001). Further, our findings showed that prolonged MH reduced the neuroprotection to AP and CVP. We also determined that the optimal MH conditions (34 °C for 4.5 h) reduced intracellular calcium, ROS, and recovered MTP. These findings indicate that there is an optimal MH treatment strategy for severely hypoxia-ischemic neurons, prolonged duration might diminish the neuroprotection, and that MH treatment likely initiates neuroprotection by inhibiting the mitochondrial apoptosis pathway.


Assuntos
Hipóxia Celular/fisiologia , Hipotermia Induzida/métodos , Hipotermia/fisiopatologia , Neurônios/citologia , Neuroproteção/fisiologia , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Glucose/metabolismo , Hipotermia/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Modelos Animais , Neurônios/fisiologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
7.
Environ Toxicol ; 31(3): 269-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25213303

RESUMO

Chromium (Cr) is a widespread metal ion in the workplace, industrial effluent, and water. The toxicity of chromium (VI) on various organs including the liver, kidneys, and lung were studied, but little is known about neurotoxicity. In this study, neurotoxic effects of Cr (VI) have been investigated by cultured cerebellar granule neurons (CGNs). Immature and mature neurons were exposed to different concentrations of potassium dichromate for 24 h and cytotoxicity was measured by MTT assay. In addition, immature neurons were exposed for 5 days as regards cytotoxic effect in development stages. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the protective effect of Rosmarinic acid on mature and immature neurons exposed to potassium dichromate, were measured. Furthermore, lipid peroxidation, glutathione peroxidase (GPx), and acetylcholinesterase activity in mature neurons were assessed following exposure to potassium dichromate. The results indicate that toxicity of Cr (VI) dependent on maturation steps. Cr (VI) was less toxic for immature neurons. Also, Cr (VI) induced MMP reduction and ROS production in both immature and mature neurons. In Cr (VI) treated neurons, increased lipid peroxidation and GPx activity but not acetylcholinesterase activity was observed. Interestingly, Rosmarinic acid, as a natural antioxidant, could protect mature but not immature neurons against Cr (VI) induced toxicity. Our findings revealed vulnerability of mature neurons to Cr (VI) induced toxicity and oxidative stress.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Cromo/toxicidade , Cinamatos/farmacologia , Depsídeos/farmacologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Células Cultivadas , Cerebelo/citologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Oxirredução/efeitos dos fármacos , Dicromato de Potássio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ácido Rosmarínico
8.
J Neurochem ; 131(5): 625-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25081478

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing Parkinson's disease. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10-100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 h, caused cell death at 24 h with an LD50 of 10 nM. Overall, autophagic flux was decreased by 10 nM rotenone at both 2 and 24 h, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 h, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Up-regulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine exacerbated cell death. Interestingly, while 3-methyladenine exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor.


Assuntos
Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Inseticidas/farmacologia , Rotenona/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/antagonistas & inibidores , DNA Mitocondrial/genética , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Lactosilceramidas/farmacologia , Neurônios/efeitos dos fármacos , Oligomicinas/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Sirolimo/farmacologia
9.
Methods Mol Biol ; 2831: 219-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134853

RESUMO

The specialized function and extreme geometry of neurons necessitates a unique reliance upon long-distance microtubule-based transport. Appropriate trafficking of axonal cargos by motor proteins is essential for establishing circuitry during development and continuing function throughout a lifespan. Visualizing and quantifying cargo movement provides valuable insight into how axonal organelles are replenished, recycled, and degraded during the dynamic dance of outgoing and incoming axonal traffic. Long-distance axonal trafficking is of particular importance as it encompasses a pathway commonly disrupted in developmental and degenerative disease states. Here, we describe neuronal organelles and outline methods for live imaging and quantifying their movement throughout the axon via transient expression of fluorescently labeled organelle markers. This resource provides recommendations for target proteins/domains and appropriate acquisition time scales for visualizing distinct neuronal cargos in cultured neurons derived from human induced pluripotent stem cells (iPSCs) and primary rat neurons.


Assuntos
Transporte Axonal , Células-Tronco Pluripotentes Induzidas , Neurônios , Organelas , Animais , Neurônios/metabolismo , Neurônios/citologia , Ratos , Organelas/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Axônios/metabolismo , Microtúbulos/metabolismo
10.
Brain Res Bull ; 195: 37-46, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775042

RESUMO

BACKGROUND: Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated. METHODS: Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue. RESULTS: Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor. CONCLUSION: Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK activation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Camundongos , Animais , Acidente Vascular Cerebral/metabolismo , Proteínas Quinases Ativadas por AMP , Isquemia Encefálica/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Glucose/metabolismo , Oxigênio/farmacologia , Apoptose , Infarto da Artéria Cerebral Média/tratamento farmacológico
11.
Methods Mol Biol ; 2585: 23-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36331762

RESUMO

Primary neurons are very valuable cells to study the pathogenesis of neurotropic viruses, such as West Nile virus. The mouse primary neurons can be used to assess viral infection profiles and cellular immune responses to a viral infection. However, successful isolation and culture of mouse neurons can be challenging. Here, we report a step-by-step method to prepare a primary neuron culture from adult mice.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Camundongos , Neurônios/fisiologia , Imunidade Celular
12.
Talanta ; 260: 124541, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37087946

RESUMO

Super-resolution imaging of dendritic spines (DS) can provide valuable information for mechanistic studies related to synaptic physiology and neural plasticity, but challenged by their small dimension (50-200 nm) below the spatial resolution of conventional optical microscopes. In this work, by combining the molecular recognition specificity of aptamer with high programmability of DNA nanotechnology, we developed an expansion microscopy (ExM) platform for imaging DS with enhanced spatial resolution and amplified signal output. Our results demonstrated that the aptamer probe could specifically bind to DS of primary hippocampal neurons. With physical expansion, the DS structure could be effectively enlarged by 4-5 folds, leading to the generation of more structural information. Meantime, the aptamer binding signal could be readily amplified by the introduction of DNA signal amplification strategy, overcoming the drawback of fluorescence dilution during the ExM treatment. This platform enabled evaluation of ischemia-induced early stroke based on the morphological change of DS, highlighting a promising avenue for studying nanoscale structures in biological systems.


Assuntos
Espinhas Dendríticas , Microscopia , Microscopia/métodos , Espinhas Dendríticas/metabolismo , Neurônios , Hipocampo , DNA/genética , DNA/metabolismo , Oligonucleotídeos/metabolismo
13.
Mol Neurobiol ; 59(5): 3206-3217, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293604

RESUMO

Zinc is an essential micronutrient required for proper function during neuronal development because it can modulate neuronal function and structure. A fully functional description of zinc in axonal processing in the central nervous system remains elusive. Here, we define the role of intracellular zinc in axon formation and elongation, involving the mammalian target of rapamycin complex 1 (mTORC1). To investigate the involvement of zinc in axon growth, we performed an ex vivo culture of mouse hippocampal neurons and administrated ZnCl2 as a media supplement. At 2 days in vitro, the administration of zinc induced the formation of multiple and elongated axons in the ex vivo culture system. A similar outcome was witnessed in callosal projection neurons in a developing mouse brain. Treatment with extracellular zinc activated the mTORC1 signaling pathway in mouse hippocampal neuronal cultures. The zinc-dependent enhancement of neuronal processing was inhibited either by the deactivation of mTORC1 with RAPTOR shRNA or by mTOR-insensitive 4EBP1 mutants. Additionally, zinc-dependent mTORC1 activation enhanced the axonal translation of TC10 and Par3 may be responsible for axonal growth. We identified a promising role of zinc in controlling axonogenesis in the developing brain, which, in turn, may indicate a novel structural role of zinc in the cytoskeleton and developing neurons.


Assuntos
Axônios , Zinco , Animais , Axônios/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neurônios/metabolismo , Transdução de Sinais , Zinco/metabolismo
14.
Front Bioeng Biotechnol ; 10: 953031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061442

RESUMO

Central nervous system (CNS) diseases have been a growing threat to the health of humanity, emphasizing the urgent need of exploring the pathogenesis and therapeutic approaches of various CNS diseases. Primary neurons are directly obtained from animals or humans, which have wide applications including disease modeling, mechanism exploration and drug development. However, traditional two-dimensional (2D) monoculture cannot resemble the native microenvironment of CNS. With the increasing understanding of the complexity of the CNS and the remarkable development of novel biomaterials, in vitro models have experienced great innovation from 2D monoculture toward three-dimensional (3D) multicellular culture. The scope of this review includes the progress of various in vitro models of primary neurons in recent years to provide a holistic view of the modalities and applications of primary neuron models and how they have been connected with the revolution of biofabrication techniques. Special attention has been paid to the interaction between primary neurons and biomaterials. First, a brief introduction on the history of CNS modeling and primary neuron culture was conducted. Next, detailed progress in novel in vitro models were discussed ranging from 2D culture, ex vivo model, spheroid, scaffold-based model, 3D bioprinting model, and microfluidic chip. Modalities, applications, advantages, and limitations of the aforementioned models were described separately. Finally, we explored future prospects, providing new insights into how basic science research methodologies have advanced our understanding of the CNS, and highlighted some future directions of primary neuron culture in the next few decades.

15.
Biophys Rep ; 8(1): 14-28, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37287687

RESUMO

Abnormal aggregation of amyloid proteins, e.g. amyloid ß (Aß), Tau and α-synuclein (α-syn), is closely associated with a variety of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Cellular and animal models are useful to explore the neuropathology of amyloid aggregates in disease initiation and progression. In this protocol, we describe detailed procedures for how to establish neuronal and PD mouse models to evaluate amyloid pathologies including self-propagation, cell-to-cell transmission, neurotoxicity, and impact on mouse motor and cognitive functions. We use α-syn, a key pathogenic protein in PD, as an example to demonstrate the application of the protocol, while it can be used to investigate the pathologies of other amyloid proteins as well. The established disease models are also useful to assess the activities of drug candidates for therapeutics of neurodegenerative diseases.

16.
Mol Brain ; 15(1): 68, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883152

RESUMO

Protein kinases are responsible for protein phosphorylation and are involved in important signal transduction pathways; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered cyclin G-associated kinase (GAK) as a candidate regulator of neurite outgrowth and synaptogenesis by examining the effects of the selective GAK inhibitor SGC-GAK-1. SGC-GAK-1 treatment of cultured neurons reduced neurite length and decreased synapse number and phosphorylation of neurofilament 200-kDa subunits relative to the control. In addition, the related kinase inhibitor erlotinib, which has distinct specificity and potency from SGC-GAK-1, had no effect on neurite growth, unlike SGC-GAK-1. These results suggest that GAK may be physiologically involved in normal neuronal development, and that decreased GAK function and the resultant impaired neurite outgrowth and synaptogenesis may be related to neurodevelopmental disorders.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , Ciclinas , Proteínas Quinases Dependentes de GMP Cíclico/farmacologia , Ciclina G , Ciclinas/farmacologia , Neuritos , Crescimento Neuronal , Inibidores de Proteínas Quinases/farmacologia , Sinapses
17.
Nutrition ; 93: 111473, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34739938

RESUMO

OBJECTIVES: As the global aging phenomenon intensifies, the incidence of Alzheimer's disease (AD) is gradually increasing. Diet appears to be an effective way to prevent and delay the progression of AD. Previous studies have found that cognitive impairment and neuronal damage were effectively alleviated by blueberry extract (BBE) in AD mice, but its mechanism is still unclear. The aims of this study were to detect the main anthocyanins of BBE; then to verify the protective effects of anthocyanin-rich BBE on hippocampal neurons and the promotion of autophagy; and finally to investigate the main protective effects and mechanisms of protocatechuic acid (PCA), a major metabolite of BBE, for promoting autophagy and thus playing a neuroprotective role. METHODS: APP/PS1 mice were given 150 mg/kg BBE daily for 16 wk. Morphology of neurons was observed and autophagy-related proteins were detected. RESULTS: Neuron damage in morphology was reduced and the expression of autophagy-related proteins in APP/PS1 mice were promoted after BBE treatment. In vitro, Aß25-35-induced cytotoxicity, including decreased neuron viability and increased levels of lactate dehydrogenase and reactive oxygen species, was effectively reversed by PCA. Furthermore, by adding autophagy inducers rapamycin and autophagy inhibitors Bafilomycin A1, it was verified that degradation of autophagosomes was upregulated and autophagy was promoted by PCA. CONCLUSION: This study elucidated the mechanism of BBE for reducing neuronal damage by promoting neuronal autophagy and proved PCA may be the main bioactive metabolite of BBE for neuroprotective effects, providing a basis for dietary intervention in AD.


Assuntos
Doença de Alzheimer , Mirtilos Azuis (Planta) , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Antocianinas/farmacologia , Autofagia , Modelos Animais de Doenças , Hidroxibenzoatos , Lisossomos , Camundongos , Camundongos Transgênicos , Neurônios , Extratos Vegetais/farmacologia
18.
Cells ; 11(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010609

RESUMO

Axonal varicosities or swellings are enlarged structures along axon shafts and profoundly affect action potential propagation and synaptic transmission. These structures, which are defined by morphology, are highly heterogeneous and often investigated concerning their roles in neuropathology, but why they are present in the normal brain remains unknown. Combining confocal microscopy and cryo-electron tomography (Cryo-ET) with in vivo and in vitro systems, we report that non-uniform mechanical interactions with the microenvironment can lead to 10-fold diameter differences within an axon of the central nervous system (CNS). In the brains of adult Thy1-YFP transgenic mice, individual axons in the cortex displayed significantly higher diameter variation than those in the corpus callosum. When being cultured on lacey carbon film-coated electron microscopy (EM) grids, CNS axons formed varicosities exclusively in holes and without microtubule (MT) breakage, and they contained mitochondria, multivesicular bodies (MVBs), and/or vesicles, similar to the axonal varicosities induced by mild fluid puffing. Moreover, enlarged axon branch points often contain MT free ends leading to the minor branch. When the axons were fasciculated by mimicking in vivo axonal bundles, their varicosity levels reduced. Taken together, our results have revealed the extrinsic regulation of the three-dimensional ultrastructures of central axons by the mechanical microenvironment under physiological conditions.


Assuntos
Axônios , Tomografia com Microscopia Eletrônica , Potenciais de Ação , Animais , Axônios/patologia , Corpo Caloso , Camundongos , Microtúbulos
19.
Front Pharmacol ; 13: 869300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517804

RESUMO

Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by high mortality and disability rates. The long-term effects of ICH-induced intracranial hematoma on patients' neurological function are unclear. Currently, an effective treatment that significantly reduces the rates of death and disability in patients with ICH is not available. Based on accumulating evidence, ferroptosis may be the leading factor contributing to the neurological impairment caused by ICH injury. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated receptor in the nuclear hormone receptor family that synergistically interacts with the nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway to promote the expression of related genes and inhibit ferroptosis. Primary rat hippocampal neurons were treated with heme (50 µM) and erastin (50 µM) to induce ferroptosis, followed by the PPARγ agonist pioglitazone (PDZ, 10 µM) to verify the inhibitory effect of PPARγ activation on ferroptosis. ML385 (2 µM), a novel and specific NRF2 inhibitor, was administered to the inhibitor group, followed by an analysis of cellular activity and immunofluorescence staining. In vivo Assays, ICH rats injected with autologous striatum were treated with 30 mg/kg/d pioglitazone, and the inhibitor group was injected with ML385 (30 mg/kg). The results showed that PDZ inhibited ferroptosis in neurons by increasing the expression of PPARγ, Nrf2 and Gpx4 in vitro, while PDZ reduced ferroptosis in neurons after ICH and promoted the recovery of neural function in vivo. Our results suggest that PDZ, a PPARγ agonist, promotes Gpx4 expression through the interaction between PPARγ and the Nrf2 pathway, inhibits ferroptosis of neurons after ICH, and promotes the recovery of neural function.

20.
Front Cell Neurosci ; 15: 661492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815068

RESUMO

Primary dissociated neuronal cultures have become a standard model for studying central nervous system (CNS) development. Such cultures are predominantly prepared from the hippocampus or cortex of rodents (mice and rats), while other mammals are less used. Here, we describe the establishment and extensive characterization of the primary dissociated neuronal cultures derived from the cortex of the gray South American short-tailed opossums, Monodelphis domestica. Opossums are unique in their ability to fully regenerate their CNS after an injury during their early postnatal development. Thus, we used cortex of postnatal day (P) 3-5 opossum to establish long-surviving and nearly pure neuronal cultures, as well as mixed cultures composed of radial glia cells (RGCs) in which their neurogenic and gliogenic potential was confirmed. Both types of cultures can survive for more than 1 month in vitro. We also prepared neuronal cultures from the P16-18 opossum cortex, which were composed of astrocytes and microglia, in addition to neurons. The long-surviving opossum primary dissociated neuronal cultures represent a novel mammalian in vitro platform particularly useful to study CNS development and regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA